Loading…

A General Propensity Score for Signal Identification Using Tree-Based Scan Statistics

The tree-based scan statistic (TreeScan; Martin Kulldorff, Harvard Medical School, Boston, Massachusetts) is a data-mining method that adjusts for multiple testing of correlated hypotheses when screening thousands of potential adverse events for signal identification. Simulation has demonstrated the...

Full description

Saved in:
Bibliographic Details
Published in:American journal of epidemiology 2021-07, Vol.190 (7), p.1424-1433
Main Authors: Wang, Shirley V, Maro, Judith C, Gagne, Joshua J, Patorno, Elisabetta, Kattinakere, Sushama, Stojanovic, Danijela, Eworuke, Efe, Baro, Elande, Ouellet-Hellstrom, Rita, Nguyen, Michael, Ma, Yong, Dashevsky, Inna, Cole, David, DeLuccia, Sandra, Hansbury, Aaron, Pestine, Ella, Kulldorff, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-9626449d85122f38a59831c62cd7544cc2526faf45f3872b9fe8933eabd97e53
cites cdi_FETCH-LOGICAL-c385t-9626449d85122f38a59831c62cd7544cc2526faf45f3872b9fe8933eabd97e53
container_end_page 1433
container_issue 7
container_start_page 1424
container_title American journal of epidemiology
container_volume 190
creator Wang, Shirley V
Maro, Judith C
Gagne, Joshua J
Patorno, Elisabetta
Kattinakere, Sushama
Stojanovic, Danijela
Eworuke, Efe
Baro, Elande
Ouellet-Hellstrom, Rita
Nguyen, Michael
Ma, Yong
Dashevsky, Inna
Cole, David
DeLuccia, Sandra
Hansbury, Aaron
Pestine, Ella
Kulldorff, Martin
description The tree-based scan statistic (TreeScan; Martin Kulldorff, Harvard Medical School, Boston, Massachusetts) is a data-mining method that adjusts for multiple testing of correlated hypotheses when screening thousands of potential adverse events for signal identification. Simulation has demonstrated the promise of TreeScan with a propensity score (PS)-matched cohort design. However, it is unclear which variables to include in a PS for applied signal identification studies to simultaneously adjust for confounding across potential outcomes. We selected 4 pairs of medications with well-understood safety profiles. For each pair, we evaluated 5 candidate PSs with different combinations of 1) predefined general covariates (comorbidity, frailty, utilization), 2) empirically selected (data-driven) covariates, and 3) covariates tailored to the drug pair. For each pair, statistical alerting patterns were similar with alternative PSs (≤11 alerts in 7,996 outcomes scanned). Inclusion of covariates tailored to exposure did not appreciably affect screening results. Inclusion of empirically selected covariates can provide better proxy coverage for confounders but can also decrease statistical power. Unlike tailored covariates, empirical and predefined general covariates can be applied “out of the box” for signal identification. The choice of PS depends on the level of concern about residual confounding versus loss of power. Potential signals should be followed by pharmacoepidemiologic assessment where confounding control is tailored to the specific outcome(s) under investigation.
doi_str_mv 10.1093/aje/kwab034
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2492280830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/aje/kwab034</oup_id><sourcerecordid>2842568039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9626449d85122f38a59831c62cd7544cc2526faf45f3872b9fe8933eabd97e53</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgiq3VlXsZEESQsXk3Wdbio1BQaLse0sydktpOajKD9N8baXXhwlUW57sHchC6JPieYM36ZgX990-zwIwfoS7hA5lLKuQx6mKMaa6ppB10FuMKY0K0wKeow5gkgjHcRfNh9gw1BLPO3oLfQh1ds8um1gfIKh-yqVvWKRuXUDeuctY0ztfZPLp6mc0CQP5gIpTpwNTZtElpbJyN5-ikMusIF4e3h2ZPj7PRSz55fR6PhpPcMiWaXEsqOdelEoTSiikjtGLESmrLgeDcWiqorEzFRQoHdKErUJoxMItSD0CwHrrd126D_2ghNsXGRQvrtanBt7GgXFOqsGI40es_dOXbkL6WlOJpLoWZTupur2zwMQaoim1wGxN2BcHF99hFGrs4jJ301aGzXWyg_LU_6yZwswe-3f7b9AVKlYaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842568039</pqid></control><display><type>article</type><title>A General Propensity Score for Signal Identification Using Tree-Based Scan Statistics</title><source>Oxford Journals Online</source><creator>Wang, Shirley V ; Maro, Judith C ; Gagne, Joshua J ; Patorno, Elisabetta ; Kattinakere, Sushama ; Stojanovic, Danijela ; Eworuke, Efe ; Baro, Elande ; Ouellet-Hellstrom, Rita ; Nguyen, Michael ; Ma, Yong ; Dashevsky, Inna ; Cole, David ; DeLuccia, Sandra ; Hansbury, Aaron ; Pestine, Ella ; Kulldorff, Martin</creator><creatorcontrib>Wang, Shirley V ; Maro, Judith C ; Gagne, Joshua J ; Patorno, Elisabetta ; Kattinakere, Sushama ; Stojanovic, Danijela ; Eworuke, Efe ; Baro, Elande ; Ouellet-Hellstrom, Rita ; Nguyen, Michael ; Ma, Yong ; Dashevsky, Inna ; Cole, David ; DeLuccia, Sandra ; Hansbury, Aaron ; Pestine, Ella ; Kulldorff, Martin</creatorcontrib><description>The tree-based scan statistic (TreeScan; Martin Kulldorff, Harvard Medical School, Boston, Massachusetts) is a data-mining method that adjusts for multiple testing of correlated hypotheses when screening thousands of potential adverse events for signal identification. Simulation has demonstrated the promise of TreeScan with a propensity score (PS)-matched cohort design. However, it is unclear which variables to include in a PS for applied signal identification studies to simultaneously adjust for confounding across potential outcomes. We selected 4 pairs of medications with well-understood safety profiles. For each pair, we evaluated 5 candidate PSs with different combinations of 1) predefined general covariates (comorbidity, frailty, utilization), 2) empirically selected (data-driven) covariates, and 3) covariates tailored to the drug pair. For each pair, statistical alerting patterns were similar with alternative PSs (≤11 alerts in 7,996 outcomes scanned). Inclusion of covariates tailored to exposure did not appreciably affect screening results. Inclusion of empirically selected covariates can provide better proxy coverage for confounders but can also decrease statistical power. Unlike tailored covariates, empirical and predefined general covariates can be applied “out of the box” for signal identification. The choice of PS depends on the level of concern about residual confounding versus loss of power. Potential signals should be followed by pharmacoepidemiologic assessment where confounding control is tailored to the specific outcome(s) under investigation.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/aje/kwab034</identifier><identifier>PMID: 33615330</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Comorbidity ; Data mining ; Statistical analysis ; Statistics</subject><ispartof>American journal of epidemiology, 2021-07, Vol.190 (7), p.1424-1433</ispartof><rights>Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2021. This work is written by (a) US Government employee(s) and is in the public domain in the US. 2021</rights><rights>Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2021.</rights><rights>Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2021. This work is written by (a) US Government employee(s) and is in the public domain in the US.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9626449d85122f38a59831c62cd7544cc2526faf45f3872b9fe8933eabd97e53</citedby><cites>FETCH-LOGICAL-c385t-9626449d85122f38a59831c62cd7544cc2526faf45f3872b9fe8933eabd97e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33615330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shirley V</creatorcontrib><creatorcontrib>Maro, Judith C</creatorcontrib><creatorcontrib>Gagne, Joshua J</creatorcontrib><creatorcontrib>Patorno, Elisabetta</creatorcontrib><creatorcontrib>Kattinakere, Sushama</creatorcontrib><creatorcontrib>Stojanovic, Danijela</creatorcontrib><creatorcontrib>Eworuke, Efe</creatorcontrib><creatorcontrib>Baro, Elande</creatorcontrib><creatorcontrib>Ouellet-Hellstrom, Rita</creatorcontrib><creatorcontrib>Nguyen, Michael</creatorcontrib><creatorcontrib>Ma, Yong</creatorcontrib><creatorcontrib>Dashevsky, Inna</creatorcontrib><creatorcontrib>Cole, David</creatorcontrib><creatorcontrib>DeLuccia, Sandra</creatorcontrib><creatorcontrib>Hansbury, Aaron</creatorcontrib><creatorcontrib>Pestine, Ella</creatorcontrib><creatorcontrib>Kulldorff, Martin</creatorcontrib><title>A General Propensity Score for Signal Identification Using Tree-Based Scan Statistics</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>The tree-based scan statistic (TreeScan; Martin Kulldorff, Harvard Medical School, Boston, Massachusetts) is a data-mining method that adjusts for multiple testing of correlated hypotheses when screening thousands of potential adverse events for signal identification. Simulation has demonstrated the promise of TreeScan with a propensity score (PS)-matched cohort design. However, it is unclear which variables to include in a PS for applied signal identification studies to simultaneously adjust for confounding across potential outcomes. We selected 4 pairs of medications with well-understood safety profiles. For each pair, we evaluated 5 candidate PSs with different combinations of 1) predefined general covariates (comorbidity, frailty, utilization), 2) empirically selected (data-driven) covariates, and 3) covariates tailored to the drug pair. For each pair, statistical alerting patterns were similar with alternative PSs (≤11 alerts in 7,996 outcomes scanned). Inclusion of covariates tailored to exposure did not appreciably affect screening results. Inclusion of empirically selected covariates can provide better proxy coverage for confounders but can also decrease statistical power. Unlike tailored covariates, empirical and predefined general covariates can be applied “out of the box” for signal identification. The choice of PS depends on the level of concern about residual confounding versus loss of power. Potential signals should be followed by pharmacoepidemiologic assessment where confounding control is tailored to the specific outcome(s) under investigation.</description><subject>Comorbidity</subject><subject>Data mining</subject><subject>Statistical analysis</subject><subject>Statistics</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgiq3VlXsZEESQsXk3Wdbio1BQaLse0sydktpOajKD9N8baXXhwlUW57sHchC6JPieYM36ZgX990-zwIwfoS7hA5lLKuQx6mKMaa6ppB10FuMKY0K0wKeow5gkgjHcRfNh9gw1BLPO3oLfQh1ds8um1gfIKh-yqVvWKRuXUDeuctY0ztfZPLp6mc0CQP5gIpTpwNTZtElpbJyN5-ikMusIF4e3h2ZPj7PRSz55fR6PhpPcMiWaXEsqOdelEoTSiikjtGLESmrLgeDcWiqorEzFRQoHdKErUJoxMItSD0CwHrrd126D_2ghNsXGRQvrtanBt7GgXFOqsGI40es_dOXbkL6WlOJpLoWZTupur2zwMQaoim1wGxN2BcHF99hFGrs4jJ301aGzXWyg_LU_6yZwswe-3f7b9AVKlYaM</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wang, Shirley V</creator><creator>Maro, Judith C</creator><creator>Gagne, Joshua J</creator><creator>Patorno, Elisabetta</creator><creator>Kattinakere, Sushama</creator><creator>Stojanovic, Danijela</creator><creator>Eworuke, Efe</creator><creator>Baro, Elande</creator><creator>Ouellet-Hellstrom, Rita</creator><creator>Nguyen, Michael</creator><creator>Ma, Yong</creator><creator>Dashevsky, Inna</creator><creator>Cole, David</creator><creator>DeLuccia, Sandra</creator><creator>Hansbury, Aaron</creator><creator>Pestine, Ella</creator><creator>Kulldorff, Martin</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20210701</creationdate><title>A General Propensity Score for Signal Identification Using Tree-Based Scan Statistics</title><author>Wang, Shirley V ; Maro, Judith C ; Gagne, Joshua J ; Patorno, Elisabetta ; Kattinakere, Sushama ; Stojanovic, Danijela ; Eworuke, Efe ; Baro, Elande ; Ouellet-Hellstrom, Rita ; Nguyen, Michael ; Ma, Yong ; Dashevsky, Inna ; Cole, David ; DeLuccia, Sandra ; Hansbury, Aaron ; Pestine, Ella ; Kulldorff, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9626449d85122f38a59831c62cd7544cc2526faf45f3872b9fe8933eabd97e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Comorbidity</topic><topic>Data mining</topic><topic>Statistical analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shirley V</creatorcontrib><creatorcontrib>Maro, Judith C</creatorcontrib><creatorcontrib>Gagne, Joshua J</creatorcontrib><creatorcontrib>Patorno, Elisabetta</creatorcontrib><creatorcontrib>Kattinakere, Sushama</creatorcontrib><creatorcontrib>Stojanovic, Danijela</creatorcontrib><creatorcontrib>Eworuke, Efe</creatorcontrib><creatorcontrib>Baro, Elande</creatorcontrib><creatorcontrib>Ouellet-Hellstrom, Rita</creatorcontrib><creatorcontrib>Nguyen, Michael</creatorcontrib><creatorcontrib>Ma, Yong</creatorcontrib><creatorcontrib>Dashevsky, Inna</creatorcontrib><creatorcontrib>Cole, David</creatorcontrib><creatorcontrib>DeLuccia, Sandra</creatorcontrib><creatorcontrib>Hansbury, Aaron</creatorcontrib><creatorcontrib>Pestine, Ella</creatorcontrib><creatorcontrib>Kulldorff, Martin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shirley V</au><au>Maro, Judith C</au><au>Gagne, Joshua J</au><au>Patorno, Elisabetta</au><au>Kattinakere, Sushama</au><au>Stojanovic, Danijela</au><au>Eworuke, Efe</au><au>Baro, Elande</au><au>Ouellet-Hellstrom, Rita</au><au>Nguyen, Michael</au><au>Ma, Yong</au><au>Dashevsky, Inna</au><au>Cole, David</au><au>DeLuccia, Sandra</au><au>Hansbury, Aaron</au><au>Pestine, Ella</au><au>Kulldorff, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Propensity Score for Signal Identification Using Tree-Based Scan Statistics</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>190</volume><issue>7</issue><spage>1424</spage><epage>1433</epage><pages>1424-1433</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><abstract>The tree-based scan statistic (TreeScan; Martin Kulldorff, Harvard Medical School, Boston, Massachusetts) is a data-mining method that adjusts for multiple testing of correlated hypotheses when screening thousands of potential adverse events for signal identification. Simulation has demonstrated the promise of TreeScan with a propensity score (PS)-matched cohort design. However, it is unclear which variables to include in a PS for applied signal identification studies to simultaneously adjust for confounding across potential outcomes. We selected 4 pairs of medications with well-understood safety profiles. For each pair, we evaluated 5 candidate PSs with different combinations of 1) predefined general covariates (comorbidity, frailty, utilization), 2) empirically selected (data-driven) covariates, and 3) covariates tailored to the drug pair. For each pair, statistical alerting patterns were similar with alternative PSs (≤11 alerts in 7,996 outcomes scanned). Inclusion of covariates tailored to exposure did not appreciably affect screening results. Inclusion of empirically selected covariates can provide better proxy coverage for confounders but can also decrease statistical power. Unlike tailored covariates, empirical and predefined general covariates can be applied “out of the box” for signal identification. The choice of PS depends on the level of concern about residual confounding versus loss of power. Potential signals should be followed by pharmacoepidemiologic assessment where confounding control is tailored to the specific outcome(s) under investigation.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33615330</pmid><doi>10.1093/aje/kwab034</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9262
ispartof American journal of epidemiology, 2021-07, Vol.190 (7), p.1424-1433
issn 0002-9262
1476-6256
language eng
recordid cdi_proquest_miscellaneous_2492280830
source Oxford Journals Online
subjects Comorbidity
Data mining
Statistical analysis
Statistics
title A General Propensity Score for Signal Identification Using Tree-Based Scan Statistics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Propensity%20Score%20for%20Signal%20Identification%20Using%20Tree-Based%20Scan%20Statistics&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=Wang,%20Shirley%20V&rft.date=2021-07-01&rft.volume=190&rft.issue=7&rft.spage=1424&rft.epage=1433&rft.pages=1424-1433&rft.issn=0002-9262&rft.eissn=1476-6256&rft_id=info:doi/10.1093/aje/kwab034&rft_dat=%3Cproquest_cross%3E2842568039%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-9626449d85122f38a59831c62cd7544cc2526faf45f3872b9fe8933eabd97e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842568039&rft_id=info:pmid/33615330&rft_oup_id=10.1093/aje/kwab034&rfr_iscdi=true