Loading…
A General Propensity Score for Signal Identification Using Tree-Based Scan Statistics
The tree-based scan statistic (TreeScan; Martin Kulldorff, Harvard Medical School, Boston, Massachusetts) is a data-mining method that adjusts for multiple testing of correlated hypotheses when screening thousands of potential adverse events for signal identification. Simulation has demonstrated the...
Saved in:
Published in: | American journal of epidemiology 2021-07, Vol.190 (7), p.1424-1433 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-9626449d85122f38a59831c62cd7544cc2526faf45f3872b9fe8933eabd97e53 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-9626449d85122f38a59831c62cd7544cc2526faf45f3872b9fe8933eabd97e53 |
container_end_page | 1433 |
container_issue | 7 |
container_start_page | 1424 |
container_title | American journal of epidemiology |
container_volume | 190 |
creator | Wang, Shirley V Maro, Judith C Gagne, Joshua J Patorno, Elisabetta Kattinakere, Sushama Stojanovic, Danijela Eworuke, Efe Baro, Elande Ouellet-Hellstrom, Rita Nguyen, Michael Ma, Yong Dashevsky, Inna Cole, David DeLuccia, Sandra Hansbury, Aaron Pestine, Ella Kulldorff, Martin |
description | The tree-based scan statistic (TreeScan; Martin Kulldorff, Harvard Medical School, Boston, Massachusetts) is a data-mining method that adjusts for multiple testing of correlated hypotheses when screening thousands of potential adverse events for signal identification. Simulation has demonstrated the promise of TreeScan with a propensity score (PS)-matched cohort design. However, it is unclear which variables to include in a PS for applied signal identification studies to simultaneously adjust for confounding across potential outcomes. We selected 4 pairs of medications with well-understood safety profiles. For each pair, we evaluated 5 candidate PSs with different combinations of 1) predefined general covariates (comorbidity, frailty, utilization), 2) empirically selected (data-driven) covariates, and 3) covariates tailored to the drug pair. For each pair, statistical alerting patterns were similar with alternative PSs (≤11 alerts in 7,996 outcomes scanned). Inclusion of covariates tailored to exposure did not appreciably affect screening results. Inclusion of empirically selected covariates can provide better proxy coverage for confounders but can also decrease statistical power. Unlike tailored covariates, empirical and predefined general covariates can be applied “out of the box” for signal identification. The choice of PS depends on the level of concern about residual confounding versus loss of power. Potential signals should be followed by pharmacoepidemiologic assessment where confounding control is tailored to the specific outcome(s) under investigation. |
doi_str_mv | 10.1093/aje/kwab034 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2492280830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/aje/kwab034</oup_id><sourcerecordid>2842568039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9626449d85122f38a59831c62cd7544cc2526faf45f3872b9fe8933eabd97e53</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgiq3VlXsZEESQsXk3Wdbio1BQaLse0sydktpOajKD9N8baXXhwlUW57sHchC6JPieYM36ZgX990-zwIwfoS7hA5lLKuQx6mKMaa6ppB10FuMKY0K0wKeow5gkgjHcRfNh9gw1BLPO3oLfQh1ds8um1gfIKh-yqVvWKRuXUDeuctY0ztfZPLp6mc0CQP5gIpTpwNTZtElpbJyN5-ikMusIF4e3h2ZPj7PRSz55fR6PhpPcMiWaXEsqOdelEoTSiikjtGLESmrLgeDcWiqorEzFRQoHdKErUJoxMItSD0CwHrrd126D_2ghNsXGRQvrtanBt7GgXFOqsGI40es_dOXbkL6WlOJpLoWZTupur2zwMQaoim1wGxN2BcHF99hFGrs4jJ301aGzXWyg_LU_6yZwswe-3f7b9AVKlYaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842568039</pqid></control><display><type>article</type><title>A General Propensity Score for Signal Identification Using Tree-Based Scan Statistics</title><source>Oxford Journals Online</source><creator>Wang, Shirley V ; Maro, Judith C ; Gagne, Joshua J ; Patorno, Elisabetta ; Kattinakere, Sushama ; Stojanovic, Danijela ; Eworuke, Efe ; Baro, Elande ; Ouellet-Hellstrom, Rita ; Nguyen, Michael ; Ma, Yong ; Dashevsky, Inna ; Cole, David ; DeLuccia, Sandra ; Hansbury, Aaron ; Pestine, Ella ; Kulldorff, Martin</creator><creatorcontrib>Wang, Shirley V ; Maro, Judith C ; Gagne, Joshua J ; Patorno, Elisabetta ; Kattinakere, Sushama ; Stojanovic, Danijela ; Eworuke, Efe ; Baro, Elande ; Ouellet-Hellstrom, Rita ; Nguyen, Michael ; Ma, Yong ; Dashevsky, Inna ; Cole, David ; DeLuccia, Sandra ; Hansbury, Aaron ; Pestine, Ella ; Kulldorff, Martin</creatorcontrib><description>The tree-based scan statistic (TreeScan; Martin Kulldorff, Harvard Medical School, Boston, Massachusetts) is a data-mining method that adjusts for multiple testing of correlated hypotheses when screening thousands of potential adverse events for signal identification. Simulation has demonstrated the promise of TreeScan with a propensity score (PS)-matched cohort design. However, it is unclear which variables to include in a PS for applied signal identification studies to simultaneously adjust for confounding across potential outcomes. We selected 4 pairs of medications with well-understood safety profiles. For each pair, we evaluated 5 candidate PSs with different combinations of 1) predefined general covariates (comorbidity, frailty, utilization), 2) empirically selected (data-driven) covariates, and 3) covariates tailored to the drug pair. For each pair, statistical alerting patterns were similar with alternative PSs (≤11 alerts in 7,996 outcomes scanned). Inclusion of covariates tailored to exposure did not appreciably affect screening results. Inclusion of empirically selected covariates can provide better proxy coverage for confounders but can also decrease statistical power. Unlike tailored covariates, empirical and predefined general covariates can be applied “out of the box” for signal identification. The choice of PS depends on the level of concern about residual confounding versus loss of power. Potential signals should be followed by pharmacoepidemiologic assessment where confounding control is tailored to the specific outcome(s) under investigation.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/aje/kwab034</identifier><identifier>PMID: 33615330</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Comorbidity ; Data mining ; Statistical analysis ; Statistics</subject><ispartof>American journal of epidemiology, 2021-07, Vol.190 (7), p.1424-1433</ispartof><rights>Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2021. This work is written by (a) US Government employee(s) and is in the public domain in the US. 2021</rights><rights>Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2021.</rights><rights>Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2021. This work is written by (a) US Government employee(s) and is in the public domain in the US.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9626449d85122f38a59831c62cd7544cc2526faf45f3872b9fe8933eabd97e53</citedby><cites>FETCH-LOGICAL-c385t-9626449d85122f38a59831c62cd7544cc2526faf45f3872b9fe8933eabd97e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33615330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shirley V</creatorcontrib><creatorcontrib>Maro, Judith C</creatorcontrib><creatorcontrib>Gagne, Joshua J</creatorcontrib><creatorcontrib>Patorno, Elisabetta</creatorcontrib><creatorcontrib>Kattinakere, Sushama</creatorcontrib><creatorcontrib>Stojanovic, Danijela</creatorcontrib><creatorcontrib>Eworuke, Efe</creatorcontrib><creatorcontrib>Baro, Elande</creatorcontrib><creatorcontrib>Ouellet-Hellstrom, Rita</creatorcontrib><creatorcontrib>Nguyen, Michael</creatorcontrib><creatorcontrib>Ma, Yong</creatorcontrib><creatorcontrib>Dashevsky, Inna</creatorcontrib><creatorcontrib>Cole, David</creatorcontrib><creatorcontrib>DeLuccia, Sandra</creatorcontrib><creatorcontrib>Hansbury, Aaron</creatorcontrib><creatorcontrib>Pestine, Ella</creatorcontrib><creatorcontrib>Kulldorff, Martin</creatorcontrib><title>A General Propensity Score for Signal Identification Using Tree-Based Scan Statistics</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>The tree-based scan statistic (TreeScan; Martin Kulldorff, Harvard Medical School, Boston, Massachusetts) is a data-mining method that adjusts for multiple testing of correlated hypotheses when screening thousands of potential adverse events for signal identification. Simulation has demonstrated the promise of TreeScan with a propensity score (PS)-matched cohort design. However, it is unclear which variables to include in a PS for applied signal identification studies to simultaneously adjust for confounding across potential outcomes. We selected 4 pairs of medications with well-understood safety profiles. For each pair, we evaluated 5 candidate PSs with different combinations of 1) predefined general covariates (comorbidity, frailty, utilization), 2) empirically selected (data-driven) covariates, and 3) covariates tailored to the drug pair. For each pair, statistical alerting patterns were similar with alternative PSs (≤11 alerts in 7,996 outcomes scanned). Inclusion of covariates tailored to exposure did not appreciably affect screening results. Inclusion of empirically selected covariates can provide better proxy coverage for confounders but can also decrease statistical power. Unlike tailored covariates, empirical and predefined general covariates can be applied “out of the box” for signal identification. The choice of PS depends on the level of concern about residual confounding versus loss of power. Potential signals should be followed by pharmacoepidemiologic assessment where confounding control is tailored to the specific outcome(s) under investigation.</description><subject>Comorbidity</subject><subject>Data mining</subject><subject>Statistical analysis</subject><subject>Statistics</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgiq3VlXsZEESQsXk3Wdbio1BQaLse0sydktpOajKD9N8baXXhwlUW57sHchC6JPieYM36ZgX990-zwIwfoS7hA5lLKuQx6mKMaa6ppB10FuMKY0K0wKeow5gkgjHcRfNh9gw1BLPO3oLfQh1ds8um1gfIKh-yqVvWKRuXUDeuctY0ztfZPLp6mc0CQP5gIpTpwNTZtElpbJyN5-ikMusIF4e3h2ZPj7PRSz55fR6PhpPcMiWaXEsqOdelEoTSiikjtGLESmrLgeDcWiqorEzFRQoHdKErUJoxMItSD0CwHrrd126D_2ghNsXGRQvrtanBt7GgXFOqsGI40es_dOXbkL6WlOJpLoWZTupur2zwMQaoim1wGxN2BcHF99hFGrs4jJ301aGzXWyg_LU_6yZwswe-3f7b9AVKlYaM</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wang, Shirley V</creator><creator>Maro, Judith C</creator><creator>Gagne, Joshua J</creator><creator>Patorno, Elisabetta</creator><creator>Kattinakere, Sushama</creator><creator>Stojanovic, Danijela</creator><creator>Eworuke, Efe</creator><creator>Baro, Elande</creator><creator>Ouellet-Hellstrom, Rita</creator><creator>Nguyen, Michael</creator><creator>Ma, Yong</creator><creator>Dashevsky, Inna</creator><creator>Cole, David</creator><creator>DeLuccia, Sandra</creator><creator>Hansbury, Aaron</creator><creator>Pestine, Ella</creator><creator>Kulldorff, Martin</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20210701</creationdate><title>A General Propensity Score for Signal Identification Using Tree-Based Scan Statistics</title><author>Wang, Shirley V ; Maro, Judith C ; Gagne, Joshua J ; Patorno, Elisabetta ; Kattinakere, Sushama ; Stojanovic, Danijela ; Eworuke, Efe ; Baro, Elande ; Ouellet-Hellstrom, Rita ; Nguyen, Michael ; Ma, Yong ; Dashevsky, Inna ; Cole, David ; DeLuccia, Sandra ; Hansbury, Aaron ; Pestine, Ella ; Kulldorff, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9626449d85122f38a59831c62cd7544cc2526faf45f3872b9fe8933eabd97e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Comorbidity</topic><topic>Data mining</topic><topic>Statistical analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shirley V</creatorcontrib><creatorcontrib>Maro, Judith C</creatorcontrib><creatorcontrib>Gagne, Joshua J</creatorcontrib><creatorcontrib>Patorno, Elisabetta</creatorcontrib><creatorcontrib>Kattinakere, Sushama</creatorcontrib><creatorcontrib>Stojanovic, Danijela</creatorcontrib><creatorcontrib>Eworuke, Efe</creatorcontrib><creatorcontrib>Baro, Elande</creatorcontrib><creatorcontrib>Ouellet-Hellstrom, Rita</creatorcontrib><creatorcontrib>Nguyen, Michael</creatorcontrib><creatorcontrib>Ma, Yong</creatorcontrib><creatorcontrib>Dashevsky, Inna</creatorcontrib><creatorcontrib>Cole, David</creatorcontrib><creatorcontrib>DeLuccia, Sandra</creatorcontrib><creatorcontrib>Hansbury, Aaron</creatorcontrib><creatorcontrib>Pestine, Ella</creatorcontrib><creatorcontrib>Kulldorff, Martin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shirley V</au><au>Maro, Judith C</au><au>Gagne, Joshua J</au><au>Patorno, Elisabetta</au><au>Kattinakere, Sushama</au><au>Stojanovic, Danijela</au><au>Eworuke, Efe</au><au>Baro, Elande</au><au>Ouellet-Hellstrom, Rita</au><au>Nguyen, Michael</au><au>Ma, Yong</au><au>Dashevsky, Inna</au><au>Cole, David</au><au>DeLuccia, Sandra</au><au>Hansbury, Aaron</au><au>Pestine, Ella</au><au>Kulldorff, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Propensity Score for Signal Identification Using Tree-Based Scan Statistics</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>190</volume><issue>7</issue><spage>1424</spage><epage>1433</epage><pages>1424-1433</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><abstract>The tree-based scan statistic (TreeScan; Martin Kulldorff, Harvard Medical School, Boston, Massachusetts) is a data-mining method that adjusts for multiple testing of correlated hypotheses when screening thousands of potential adverse events for signal identification. Simulation has demonstrated the promise of TreeScan with a propensity score (PS)-matched cohort design. However, it is unclear which variables to include in a PS for applied signal identification studies to simultaneously adjust for confounding across potential outcomes. We selected 4 pairs of medications with well-understood safety profiles. For each pair, we evaluated 5 candidate PSs with different combinations of 1) predefined general covariates (comorbidity, frailty, utilization), 2) empirically selected (data-driven) covariates, and 3) covariates tailored to the drug pair. For each pair, statistical alerting patterns were similar with alternative PSs (≤11 alerts in 7,996 outcomes scanned). Inclusion of covariates tailored to exposure did not appreciably affect screening results. Inclusion of empirically selected covariates can provide better proxy coverage for confounders but can also decrease statistical power. Unlike tailored covariates, empirical and predefined general covariates can be applied “out of the box” for signal identification. The choice of PS depends on the level of concern about residual confounding versus loss of power. Potential signals should be followed by pharmacoepidemiologic assessment where confounding control is tailored to the specific outcome(s) under investigation.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33615330</pmid><doi>10.1093/aje/kwab034</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9262 |
ispartof | American journal of epidemiology, 2021-07, Vol.190 (7), p.1424-1433 |
issn | 0002-9262 1476-6256 |
language | eng |
recordid | cdi_proquest_miscellaneous_2492280830 |
source | Oxford Journals Online |
subjects | Comorbidity Data mining Statistical analysis Statistics |
title | A General Propensity Score for Signal Identification Using Tree-Based Scan Statistics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Propensity%20Score%20for%20Signal%20Identification%20Using%20Tree-Based%20Scan%20Statistics&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=Wang,%20Shirley%20V&rft.date=2021-07-01&rft.volume=190&rft.issue=7&rft.spage=1424&rft.epage=1433&rft.pages=1424-1433&rft.issn=0002-9262&rft.eissn=1476-6256&rft_id=info:doi/10.1093/aje/kwab034&rft_dat=%3Cproquest_cross%3E2842568039%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-9626449d85122f38a59831c62cd7544cc2526faf45f3872b9fe8933eabd97e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842568039&rft_id=info:pmid/33615330&rft_oup_id=10.1093/aje/kwab034&rfr_iscdi=true |