Loading…

Intratumoral Plasmid IL12 Expands CD8 + T Cells and Induces a CXCR3 Gene Signature in Triple-negative Breast Tumors that Sensitizes Patients to Anti-PD-1 Therapy

Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Antibodies targeting programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) have entered the therapeutic landscape in TNBC, but only a minority of patients benefit. A way to reliably enhance immunog...

Full description

Saved in:
Bibliographic Details
Published in:Clinical cancer research 2021-05, Vol.27 (9), p.2481-2493
Main Authors: Telli, Melinda L, Nagata, Hiroshi, Wapnir, Irene, Acharya, Chaitanya R, Zablotsky, Kaitlin, Fox, Bernard A, Bifulco, Carlo B, Jensen, Shawn M, Ballesteros-Merino, Carmen, Le, Mai Hope, Pierce, Robert H, Browning, Erica, Hermiz, Reneta, Svenson, Lauren, Bannavong, Donna, Jaffe, Kim, Sell, Jendy, Foerter, Kellie Malloy, Canton, David A, Twitty, Christopher G, Osada, Takuya, Lyerly, H Kim, Crosby, Erika J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Antibodies targeting programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) have entered the therapeutic landscape in TNBC, but only a minority of patients benefit. A way to reliably enhance immunogenicity, T-cell infiltration, and predict responsiveness is critically needed. Using mouse models of TNBC, we evaluate immune activation and tumor targeting of intratumoral IL12 plasmid followed by electroporation (tavokinogene telseplasmid; Tavo). We further present a single-arm, prospective clinical trial of Tavo monotherapy in patients with treatment refractory, advanced TNBC (OMS-I140). Finally, we expand these findings using publicly available breast cancer and melanoma datasets. Single-cell RNA sequencing of murine tumors identified a CXCR3 gene signature (CXCR3-GS) following Tavo treatment associated with enhanced antigen presentation, T-cell infiltration and expansion, and PD-1/PD-L1 expression. Assessment of pretreatment and posttreatment tissue from patients confirms enrichment of this CXCR3-GS in tumors from patients that exhibited an enhancement of CD8 T-cell infiltration following treatment. One patient, previously unresponsive to anti-PD-L1 therapy, but who exhibited an increased CXCR3-GS after Tavo treatment, went on to receive additional anti-PD-1 therapy as their immediate next treatment after OMS-I140, and demonstrated a significant clinical response. These data show a safe, effective intratumoral therapy that can enhance antigen presentation and recruit CD8 T cells, which are required for the antitumor efficacy. We identify a Tavo treatment-related gene signature associated with improved outcomes and conversion of nonresponsive tumors, potentially even beyond TNBC.
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-20-3944