Loading…

Mitigation of Copper Stress in Maize (Zea mays) and Sunflower (Helianthus annuus) Plants by Copper-resistant Pseudomonas Strains

Use of heavy metal (HM) resistant plant growth-promoting rhizobacteria (PGPR) is among the eco-friendly strategies to increase the resistance of crop plants against the HM stress. In this study, we investigated the effects of two copper (Cu)-resistant PGPR strains ( Pseudomonas fluorescens P22 and P...

Full description

Saved in:
Bibliographic Details
Published in:Current microbiology 2021-04, Vol.78 (4), p.1335-1343
Main Authors: Abbaszadeh-Dahaji, Payman, Atajan, Farhad Azarmi, Omidvari, Mahtab, Tahan, Vahid, Kariman, Khalil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-ba6af15866fbc6c8f757aa65dadd5659b1cd93859248cdd7460ddc54085be96f3
cites cdi_FETCH-LOGICAL-c375t-ba6af15866fbc6c8f757aa65dadd5659b1cd93859248cdd7460ddc54085be96f3
container_end_page 1343
container_issue 4
container_start_page 1335
container_title Current microbiology
container_volume 78
creator Abbaszadeh-Dahaji, Payman
Atajan, Farhad Azarmi
Omidvari, Mahtab
Tahan, Vahid
Kariman, Khalil
description Use of heavy metal (HM) resistant plant growth-promoting rhizobacteria (PGPR) is among the eco-friendly strategies to increase the resistance of crop plants against the HM stress. In this study, we investigated the effects of two copper (Cu)-resistant PGPR strains ( Pseudomonas fluorescens P22 and Pseudomonas sp. Z6) on the growth and nutrition of maize ( Zea mays ) and sunflower ( Helianthus annuus ) plants grown in a Cu-contaminated soil under glasshouse conditions. Both PGPR strains significantly increased the plant vegetative parameters including shoot biomass, stem height and diameter, and chlorophyll (SPAD values) index in both crops. In both plants, the PGPR inoculations also significantly elevated the uptake of nutrients including potassium, phosphorus, calcium, magnesium (only by P. fluorescens P22), iron, zinc, manganese, and Cu. Magnitude of the nutritional effects varied between the PGPR strains, e.g., in sunflower, inoculation with P. fluorescens P22 and Pseudomonas sp. Z6 led to an increase in uptake of Zn by 42% and 114%, or Mn by 61% and 88%, respectively, in comparison with control plants. Improved performance of the inoculated plants can be attributed to the plant growth-promoting (e.g., production of auxin and siderophore, phosphate solubilization activities, etc.) and stress removal ( e.g ., production of ACC-deaminase to drop the ethylene level in stressed plants) properties of the PGPR strains, which were uncovered in our in vitro studies prior to the glasshouse experiment. Beside the plant growth-promoting traits of these PGPR strains, their high resistance to Cu toxicity seemed to be of particular importance for plant fitness improvement under Cu toxicity.
doi_str_mv 10.1007/s00284-021-02408-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2494875693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494875693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-ba6af15866fbc6c8f757aa65dadd5659b1cd93859248cdd7460ddc54085be96f3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rj6BzxIwMt4aE06X52jDKsr7OLC6sVLSHfSa5buZEx1GGZP_nSzzqyCBw9FQdVTbxX1IvSSkreUEPUOCGk73pCW1uCka3aP0Ipy1jZEa_oYrQjjrOmkoCfoGcAtIbTVhD5FJ4xJLplSK_TzMizhxi4hRZxGvEnbrc_4eskeAIeIL22483j9zVs82z28wTY6fF3iOKVdBdfnfgo2Lt8L1E4spRJXUy0A7vdHtaZqBVhqEV-BLy7NKVq432FDhOfoyWgn8C-O-RR9_XD2ZXPeXHz--Gnz_qIZmBJL01tpRyo6Kcd-kEM3KqGslcJZ54QUuqeD06wTuuXd4Jzikjg3iPoV0XstR3aK1gfdbU4_iofFzAEGP9VjfSpgWq55p4TUrKKv_0FvU8mxXmdaQYRQgipdqfZADTkBZD-abQ6zzXtDibn3xxz8MdUf89sfs6tDr47SpZ-9-zPyYEgF2AGA2oo3Pv_d_R_ZX69dnMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505575179</pqid></control><display><type>article</type><title>Mitigation of Copper Stress in Maize (Zea mays) and Sunflower (Helianthus annuus) Plants by Copper-resistant Pseudomonas Strains</title><source>Springer Nature</source><creator>Abbaszadeh-Dahaji, Payman ; Atajan, Farhad Azarmi ; Omidvari, Mahtab ; Tahan, Vahid ; Kariman, Khalil</creator><creatorcontrib>Abbaszadeh-Dahaji, Payman ; Atajan, Farhad Azarmi ; Omidvari, Mahtab ; Tahan, Vahid ; Kariman, Khalil</creatorcontrib><description>Use of heavy metal (HM) resistant plant growth-promoting rhizobacteria (PGPR) is among the eco-friendly strategies to increase the resistance of crop plants against the HM stress. In this study, we investigated the effects of two copper (Cu)-resistant PGPR strains ( Pseudomonas fluorescens P22 and Pseudomonas sp. Z6) on the growth and nutrition of maize ( Zea mays ) and sunflower ( Helianthus annuus ) plants grown in a Cu-contaminated soil under glasshouse conditions. Both PGPR strains significantly increased the plant vegetative parameters including shoot biomass, stem height and diameter, and chlorophyll (SPAD values) index in both crops. In both plants, the PGPR inoculations also significantly elevated the uptake of nutrients including potassium, phosphorus, calcium, magnesium (only by P. fluorescens P22), iron, zinc, manganese, and Cu. Magnitude of the nutritional effects varied between the PGPR strains, e.g., in sunflower, inoculation with P. fluorescens P22 and Pseudomonas sp. Z6 led to an increase in uptake of Zn by 42% and 114%, or Mn by 61% and 88%, respectively, in comparison with control plants. Improved performance of the inoculated plants can be attributed to the plant growth-promoting (e.g., production of auxin and siderophore, phosphate solubilization activities, etc.) and stress removal ( e.g ., production of ACC-deaminase to drop the ethylene level in stressed plants) properties of the PGPR strains, which were uncovered in our in vitro studies prior to the glasshouse experiment. Beside the plant growth-promoting traits of these PGPR strains, their high resistance to Cu toxicity seemed to be of particular importance for plant fitness improvement under Cu toxicity.</description><identifier>ISSN: 0343-8651</identifier><identifier>EISSN: 1432-0991</identifier><identifier>DOI: 10.1007/s00284-021-02408-w</identifier><identifier>PMID: 33646377</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical and Life Sciences ; Biotechnology ; Calcium ; Chlorophyll ; Copper ; Copper - analysis ; Corn ; Greenhouses ; Heavy metals ; Helianthus ; Helianthus annuus ; High resistance ; Inoculation ; Life Sciences ; Magnesium ; Manganese ; Microbiology ; Nutrient uptake ; Nutrients ; Nutrition ; Phosphorus ; Plant Development ; Plant growth ; Plant Roots - chemistry ; Pseudomonas ; Pseudomonas fluorescens ; Soil conditions ; Soil contamination ; Soil Microbiology ; Soil Pollutants - analysis ; Soil pollution ; Solubilization ; Sunflowers ; Toxicity ; Zea mays ; Zinc</subject><ispartof>Current microbiology, 2021-04, Vol.78 (4), p.1335-1343</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-ba6af15866fbc6c8f757aa65dadd5659b1cd93859248cdd7460ddc54085be96f3</citedby><cites>FETCH-LOGICAL-c375t-ba6af15866fbc6c8f757aa65dadd5659b1cd93859248cdd7460ddc54085be96f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33646377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbaszadeh-Dahaji, Payman</creatorcontrib><creatorcontrib>Atajan, Farhad Azarmi</creatorcontrib><creatorcontrib>Omidvari, Mahtab</creatorcontrib><creatorcontrib>Tahan, Vahid</creatorcontrib><creatorcontrib>Kariman, Khalil</creatorcontrib><title>Mitigation of Copper Stress in Maize (Zea mays) and Sunflower (Helianthus annuus) Plants by Copper-resistant Pseudomonas Strains</title><title>Current microbiology</title><addtitle>Curr Microbiol</addtitle><addtitle>Curr Microbiol</addtitle><description>Use of heavy metal (HM) resistant plant growth-promoting rhizobacteria (PGPR) is among the eco-friendly strategies to increase the resistance of crop plants against the HM stress. In this study, we investigated the effects of two copper (Cu)-resistant PGPR strains ( Pseudomonas fluorescens P22 and Pseudomonas sp. Z6) on the growth and nutrition of maize ( Zea mays ) and sunflower ( Helianthus annuus ) plants grown in a Cu-contaminated soil under glasshouse conditions. Both PGPR strains significantly increased the plant vegetative parameters including shoot biomass, stem height and diameter, and chlorophyll (SPAD values) index in both crops. In both plants, the PGPR inoculations also significantly elevated the uptake of nutrients including potassium, phosphorus, calcium, magnesium (only by P. fluorescens P22), iron, zinc, manganese, and Cu. Magnitude of the nutritional effects varied between the PGPR strains, e.g., in sunflower, inoculation with P. fluorescens P22 and Pseudomonas sp. Z6 led to an increase in uptake of Zn by 42% and 114%, or Mn by 61% and 88%, respectively, in comparison with control plants. Improved performance of the inoculated plants can be attributed to the plant growth-promoting (e.g., production of auxin and siderophore, phosphate solubilization activities, etc.) and stress removal ( e.g ., production of ACC-deaminase to drop the ethylene level in stressed plants) properties of the PGPR strains, which were uncovered in our in vitro studies prior to the glasshouse experiment. Beside the plant growth-promoting traits of these PGPR strains, their high resistance to Cu toxicity seemed to be of particular importance for plant fitness improvement under Cu toxicity.</description><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Calcium</subject><subject>Chlorophyll</subject><subject>Copper</subject><subject>Copper - analysis</subject><subject>Corn</subject><subject>Greenhouses</subject><subject>Heavy metals</subject><subject>Helianthus</subject><subject>Helianthus annuus</subject><subject>High resistance</subject><subject>Inoculation</subject><subject>Life Sciences</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Microbiology</subject><subject>Nutrient uptake</subject><subject>Nutrients</subject><subject>Nutrition</subject><subject>Phosphorus</subject><subject>Plant Development</subject><subject>Plant growth</subject><subject>Plant Roots - chemistry</subject><subject>Pseudomonas</subject><subject>Pseudomonas fluorescens</subject><subject>Soil conditions</subject><subject>Soil contamination</subject><subject>Soil Microbiology</subject><subject>Soil Pollutants - analysis</subject><subject>Soil pollution</subject><subject>Solubilization</subject><subject>Sunflowers</subject><subject>Toxicity</subject><subject>Zea mays</subject><subject>Zinc</subject><issn>0343-8651</issn><issn>1432-0991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMo7rj6BzxIwMt4aE06X52jDKsr7OLC6sVLSHfSa5buZEx1GGZP_nSzzqyCBw9FQdVTbxX1IvSSkreUEPUOCGk73pCW1uCka3aP0Ipy1jZEa_oYrQjjrOmkoCfoGcAtIbTVhD5FJ4xJLplSK_TzMizhxi4hRZxGvEnbrc_4eskeAIeIL22483j9zVs82z28wTY6fF3iOKVdBdfnfgo2Lt8L1E4spRJXUy0A7vdHtaZqBVhqEV-BLy7NKVq432FDhOfoyWgn8C-O-RR9_XD2ZXPeXHz--Gnz_qIZmBJL01tpRyo6Kcd-kEM3KqGslcJZ54QUuqeD06wTuuXd4Jzikjg3iPoV0XstR3aK1gfdbU4_iofFzAEGP9VjfSpgWq55p4TUrKKv_0FvU8mxXmdaQYRQgipdqfZADTkBZD-abQ6zzXtDibn3xxz8MdUf89sfs6tDr47SpZ-9-zPyYEgF2AGA2oo3Pv_d_R_ZX69dnMk</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Abbaszadeh-Dahaji, Payman</creator><creator>Atajan, Farhad Azarmi</creator><creator>Omidvari, Mahtab</creator><creator>Tahan, Vahid</creator><creator>Kariman, Khalil</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20210401</creationdate><title>Mitigation of Copper Stress in Maize (Zea mays) and Sunflower (Helianthus annuus) Plants by Copper-resistant Pseudomonas Strains</title><author>Abbaszadeh-Dahaji, Payman ; Atajan, Farhad Azarmi ; Omidvari, Mahtab ; Tahan, Vahid ; Kariman, Khalil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-ba6af15866fbc6c8f757aa65dadd5659b1cd93859248cdd7460ddc54085be96f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Calcium</topic><topic>Chlorophyll</topic><topic>Copper</topic><topic>Copper - analysis</topic><topic>Corn</topic><topic>Greenhouses</topic><topic>Heavy metals</topic><topic>Helianthus</topic><topic>Helianthus annuus</topic><topic>High resistance</topic><topic>Inoculation</topic><topic>Life Sciences</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Microbiology</topic><topic>Nutrient uptake</topic><topic>Nutrients</topic><topic>Nutrition</topic><topic>Phosphorus</topic><topic>Plant Development</topic><topic>Plant growth</topic><topic>Plant Roots - chemistry</topic><topic>Pseudomonas</topic><topic>Pseudomonas fluorescens</topic><topic>Soil conditions</topic><topic>Soil contamination</topic><topic>Soil Microbiology</topic><topic>Soil Pollutants - analysis</topic><topic>Soil pollution</topic><topic>Solubilization</topic><topic>Sunflowers</topic><topic>Toxicity</topic><topic>Zea mays</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbaszadeh-Dahaji, Payman</creatorcontrib><creatorcontrib>Atajan, Farhad Azarmi</creatorcontrib><creatorcontrib>Omidvari, Mahtab</creatorcontrib><creatorcontrib>Tahan, Vahid</creatorcontrib><creatorcontrib>Kariman, Khalil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbaszadeh-Dahaji, Payman</au><au>Atajan, Farhad Azarmi</au><au>Omidvari, Mahtab</au><au>Tahan, Vahid</au><au>Kariman, Khalil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitigation of Copper Stress in Maize (Zea mays) and Sunflower (Helianthus annuus) Plants by Copper-resistant Pseudomonas Strains</atitle><jtitle>Current microbiology</jtitle><stitle>Curr Microbiol</stitle><addtitle>Curr Microbiol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>78</volume><issue>4</issue><spage>1335</spage><epage>1343</epage><pages>1335-1343</pages><issn>0343-8651</issn><eissn>1432-0991</eissn><abstract>Use of heavy metal (HM) resistant plant growth-promoting rhizobacteria (PGPR) is among the eco-friendly strategies to increase the resistance of crop plants against the HM stress. In this study, we investigated the effects of two copper (Cu)-resistant PGPR strains ( Pseudomonas fluorescens P22 and Pseudomonas sp. Z6) on the growth and nutrition of maize ( Zea mays ) and sunflower ( Helianthus annuus ) plants grown in a Cu-contaminated soil under glasshouse conditions. Both PGPR strains significantly increased the plant vegetative parameters including shoot biomass, stem height and diameter, and chlorophyll (SPAD values) index in both crops. In both plants, the PGPR inoculations also significantly elevated the uptake of nutrients including potassium, phosphorus, calcium, magnesium (only by P. fluorescens P22), iron, zinc, manganese, and Cu. Magnitude of the nutritional effects varied between the PGPR strains, e.g., in sunflower, inoculation with P. fluorescens P22 and Pseudomonas sp. Z6 led to an increase in uptake of Zn by 42% and 114%, or Mn by 61% and 88%, respectively, in comparison with control plants. Improved performance of the inoculated plants can be attributed to the plant growth-promoting (e.g., production of auxin and siderophore, phosphate solubilization activities, etc.) and stress removal ( e.g ., production of ACC-deaminase to drop the ethylene level in stressed plants) properties of the PGPR strains, which were uncovered in our in vitro studies prior to the glasshouse experiment. Beside the plant growth-promoting traits of these PGPR strains, their high resistance to Cu toxicity seemed to be of particular importance for plant fitness improvement under Cu toxicity.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33646377</pmid><doi>10.1007/s00284-021-02408-w</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0343-8651
ispartof Current microbiology, 2021-04, Vol.78 (4), p.1335-1343
issn 0343-8651
1432-0991
language eng
recordid cdi_proquest_miscellaneous_2494875693
source Springer Nature
subjects Biomedical and Life Sciences
Biotechnology
Calcium
Chlorophyll
Copper
Copper - analysis
Corn
Greenhouses
Heavy metals
Helianthus
Helianthus annuus
High resistance
Inoculation
Life Sciences
Magnesium
Manganese
Microbiology
Nutrient uptake
Nutrients
Nutrition
Phosphorus
Plant Development
Plant growth
Plant Roots - chemistry
Pseudomonas
Pseudomonas fluorescens
Soil conditions
Soil contamination
Soil Microbiology
Soil Pollutants - analysis
Soil pollution
Solubilization
Sunflowers
Toxicity
Zea mays
Zinc
title Mitigation of Copper Stress in Maize (Zea mays) and Sunflower (Helianthus annuus) Plants by Copper-resistant Pseudomonas Strains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitigation%20of%20Copper%20Stress%20in%20Maize%20(Zea%20mays)%20and%20Sunflower%20(Helianthus%20annuus)%20Plants%20by%20Copper-resistant%20Pseudomonas%20Strains&rft.jtitle=Current%20microbiology&rft.au=Abbaszadeh-Dahaji,%20Payman&rft.date=2021-04-01&rft.volume=78&rft.issue=4&rft.spage=1335&rft.epage=1343&rft.pages=1335-1343&rft.issn=0343-8651&rft.eissn=1432-0991&rft_id=info:doi/10.1007/s00284-021-02408-w&rft_dat=%3Cproquest_cross%3E2494875693%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-ba6af15866fbc6c8f757aa65dadd5659b1cd93859248cdd7460ddc54085be96f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2505575179&rft_id=info:pmid/33646377&rfr_iscdi=true