Loading…
Lithium Metal Electrode with Increased Air Stability and Robust Solid Electrolyte Interphase Realized by Silane Coupling Agent Modification
The quality of the solid electrolyte interphase (SEI) layer is the decisive factor for the electrochemical performance of Li‐metal‐based batteries. Due to the absence of effective bonding, a natural SEI layer may exfoliate from the Li anode during interfacial fluctuations. Here, a silane coupling ag...
Saved in:
Published in: | Advanced materials (Weinheim) 2021-04, Vol.33 (14), p.e2008133-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The quality of the solid electrolyte interphase (SEI) layer is the decisive factor for the electrochemical performance of Li‐metal‐based batteries. Due to the absence of effective bonding, a natural SEI layer may exfoliate from the Li anode during interfacial fluctuations. Here, a silane coupling agent is introduced to serve as an adhesion promoter to bridge these two dissimilar materials via both chemical bonding and physical intertwining effects. Its inorganic reactive groups can combine with the Li substrate by forming LiOSi bonds, while organic functional groups can take part in the formation of the SEI layer and thereby bond with SEI components. Li metal electrodes with silane coupling agent modification exhibit excellent electrochemical performance, even under extreme testing conditions. This modification layer with dense structure could also protect the Li metal from corrosion by air, evidenced by the comparable electrochemical activity of the modified Li metal electrodes even after being exposed in air for 2 h. This design provides a promising pathway for the development of Li metal electrodes that will be stable both in electrolyte and in air.
A dense modification layer of a silane coupling agent enables Li metal to be stable in air and during cycling. This layer firmly adheres to the Li metal surface by forming LiOSi bonds, and it connects with the solid electrolyte interphase layer by chemical bonds and physical intertwining effects. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202008133 |