Loading…

Role of heat transfer and fluid flow in the chemical vapor deposition of diamond

The role of fluid flow and heat transfer in determining the quality of the diamond films and the rate of their deposition in a hot-filament chemical vapor deposition (HFCVD) reactor was investigated both experimentally and theoretically. The equations of conservation of mass, momentum, and enthalpy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 1990-09, Vol.68 (5), p.2424-2432
Main Authors: DEBROY, T, TANKALA, K, YARBROUGH, W. A, MESSIER, R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The role of fluid flow and heat transfer in determining the quality of the diamond films and the rate of their deposition in a hot-filament chemical vapor deposition (HFCVD) reactor was investigated both experimentally and theoretically. The equations of conservation of mass, momentum, and enthalpy were solved numerically to calculate the temperature and fluid flow fields. Experiments were conducted with various flow configurations, and the deposition rates and the spatial variations of film thickness were examined in each case. The films were characterized by Raman spectroscopy, x-ray, and scanning electron microscopy. The influences of free and forced convection, and diffusion due to concentration and temperature gradients (Soret effect) were examined. Comparison of the computed results with the experimental data revealed the importance of thermal diffusion in the HFCVD of diamond.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.346502