Loading…

Effect of surface chemistry‐modified polycaprolactone scaffolds on osteogenic differentiation of stem cells from human exfoliated deciduous teeth

The aim of this study was to investigate the effect of surface modification of a polycaprolactone scaffold on promoting osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Four different polycaprolactone scaffold were evaluated: untreated; coated with hyaluronic acid; coa...

Full description

Saved in:
Bibliographic Details
Published in:European journal of oral sciences 2021-04, Vol.129 (2), p.e12766-n/a
Main Authors: Jitpibull, Jirasak, Tangjit, Nathaphon, Dechkunakorn, Surachai, Anuwongnukroh, Niwat, Srikhirin, Toemsak, Vongsetskul, Thammasit, Sritanaudomchai, Hathaitip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study was to investigate the effect of surface modification of a polycaprolactone scaffold on promoting osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Four different polycaprolactone scaffold were evaluated: untreated; coated with hyaluronic acid; coated with gelatin; and coated with hyaluronic acid and then with gelatin. The resulting scaffolds were characterized using scanning electron microscopy and attenuated total reflectance‐Fourier transform infrared spectroscopy (ATR‐FTIR). Human stem cells were cultured on the modified scaffolds placed in osteogenic differentiation medium. During culture, the osteogenic potential of the stem cells was examined by evaluating alkaline phosphatase activity and staining intensity, expression of osteoblastic‐specific genes, and matrix mineralization. Scanning electron microscopy and ATR‐FTIR confirmed productive biomacromolecular surface treatment of the polycaprolactone scaffold. All scaffolds permitted differentiation of stem cells into osteoblastic cells, but the gelatin‐coated polycaprolactone scaffold facilitated osteogenesis of a larger number of stem cells than the untreated and the hyaluronic acid‐coated scaffolds. We demonstrate that gelatin is an appropriate macromolecule for modifying the surface of an electrospun polycaprolactone fibre scaffold that is used subsequently in bone tissue engineering applications.
ISSN:0909-8836
1600-0722
DOI:10.1111/eos.12766