Loading…

ATM: Translating the DNA Damage Response to Adaptive Immunity

ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB...

Full description

Saved in:
Bibliographic Details
Published in:Trends in immunology 2021-04, Vol.42 (4), p.350-365
Main Authors: Weitering, Thomas J., Takada, Sanami, Weemaes, Corry M.R., van Schouwenburg, Pauline A., van der Burg, Mirjam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-bab149577f3932e58aad7e3593e15eb72e2a4bbcc2990ab7692cec33f65ea98e3
cites cdi_FETCH-LOGICAL-c444t-bab149577f3932e58aad7e3593e15eb72e2a4bbcc2990ab7692cec33f65ea98e3
container_end_page 365
container_issue 4
container_start_page 350
container_title Trends in immunology
container_volume 42
creator Weitering, Thomas J.
Takada, Sanami
Weemaes, Corry M.R.
van Schouwenburg, Pauline A.
van der Burg, Mirjam
description ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination. The functions of ATM are closely intertwined with the processes that generate immunological diversity.The ATM DNA double-stranded break (DSB) response triggers the formation of a network of recruited proteins (including the MRN complex, MDC1, 53BP1) participating in tethering the break ends together.ATM deficiency reduces DSB end tethering, coding end hairpin resolution, and repair, in V(D)J-recombination. This results in a lower success rate of V(D)J recombination, with reduced receptor diversity and increased risk of (oncogenic) translocations in ATM-deficient patients compared with healthy controls.ATM participates in a positive feedback loop in CSR, through phosphorylation of Activation Induced cytidine Deaminase (AID). The end tethering properties of ATM and 53BP1 seem to be more essential for CSR, compared with V(D)J-recombination. Clinically, ATM deficiency primarily causes antibody deficiency.
doi_str_mv 10.1016/j.it.2021.02.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2498479803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1471490621000259</els_id><sourcerecordid>2498479803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-bab149577f3932e58aad7e3593e15eb72e2a4bbcc2990ab7692cec33f65ea98e3</originalsourceid><addsrcrecordid>eNp1kMtLw0AQhxdRrK-7Jwl48dK4zyRb8FBaX1AVpJ6XzWaiG5qk7m4K_veuVD0InmYO3_xm5kPolOCUYJJdNqkNKcWUpJimGJMddEB4TsZcFmT3t8fZCB1630RA5Hm-j0aMZRmTQhygq-nyYZIsne78SgfbvSbhDZL54zSZ61a_QvIMft13HpLQJ9NKr4PdQHLftkNnw8cx2qv1ysPJdz1CLzfXy9ndePF0ez-bLsaGcx7GpS4Jl3F3zSSjIAqtqxyYkAyIgDKnQDUvS2OolFiXeSapAcNYnQnQsgB2hC62uWvXvw_gg2qtN7Ba6Q76wSsaH-a5LDCL6PkftOkH18XrFBVYME5YVkQKbynjeu8d1GrtbKvdhyJYfalVjbJBfalVmKpoLo6cfQcPZQvV78CPywhMtgBEExsLTnljoTNQWQcmqKq3_6d_Ar-rhjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505341368</pqid></control><display><type>article</type><title>ATM: Translating the DNA Damage Response to Adaptive Immunity</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Weitering, Thomas J. ; Takada, Sanami ; Weemaes, Corry M.R. ; van Schouwenburg, Pauline A. ; van der Burg, Mirjam</creator><creatorcontrib>Weitering, Thomas J. ; Takada, Sanami ; Weemaes, Corry M.R. ; van Schouwenburg, Pauline A. ; van der Burg, Mirjam</creatorcontrib><description>ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination. The functions of ATM are closely intertwined with the processes that generate immunological diversity.The ATM DNA double-stranded break (DSB) response triggers the formation of a network of recruited proteins (including the MRN complex, MDC1, 53BP1) participating in tethering the break ends together.ATM deficiency reduces DSB end tethering, coding end hairpin resolution, and repair, in V(D)J-recombination. This results in a lower success rate of V(D)J recombination, with reduced receptor diversity and increased risk of (oncogenic) translocations in ATM-deficient patients compared with healthy controls.ATM participates in a positive feedback loop in CSR, through phosphorylation of Activation Induced cytidine Deaminase (AID). The end tethering properties of ATM and 53BP1 seem to be more essential for CSR, compared with V(D)J-recombination. Clinically, ATM deficiency primarily causes antibody deficiency.</description><identifier>ISSN: 1471-4906</identifier><identifier>EISSN: 1471-4981</identifier><identifier>DOI: 10.1016/j.it.2021.02.001</identifier><identifier>PMID: 33663955</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adaptive control ; Adaptive immunity ; Antibodies ; antibody deficiency ; Apoptosis ; Ataxia ; Ataxia telangiectasia ; Ataxia telangiectasia mutated protein ; ATM ; Binding sites ; Cell cycle ; class switch recombination ; Class switching ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA double strand break response ; DNA repair ; Double-strand break repair ; Gene loci ; Immunodeficiency ; Immunoglobulins ; Immunology ; Kinases ; Lung diseases ; Lymphocytes ; Mutation ; Proteins ; Recombination ; Repair ; T cell receptors ; V(D)J recombination</subject><ispartof>Trends in immunology, 2021-04, Vol.42 (4), p.350-365</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-bab149577f3932e58aad7e3593e15eb72e2a4bbcc2990ab7692cec33f65ea98e3</citedby><cites>FETCH-LOGICAL-c444t-bab149577f3932e58aad7e3593e15eb72e2a4bbcc2990ab7692cec33f65ea98e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33663955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weitering, Thomas J.</creatorcontrib><creatorcontrib>Takada, Sanami</creatorcontrib><creatorcontrib>Weemaes, Corry M.R.</creatorcontrib><creatorcontrib>van Schouwenburg, Pauline A.</creatorcontrib><creatorcontrib>van der Burg, Mirjam</creatorcontrib><title>ATM: Translating the DNA Damage Response to Adaptive Immunity</title><title>Trends in immunology</title><addtitle>Trends Immunol</addtitle><description>ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination. The functions of ATM are closely intertwined with the processes that generate immunological diversity.The ATM DNA double-stranded break (DSB) response triggers the formation of a network of recruited proteins (including the MRN complex, MDC1, 53BP1) participating in tethering the break ends together.ATM deficiency reduces DSB end tethering, coding end hairpin resolution, and repair, in V(D)J-recombination. This results in a lower success rate of V(D)J recombination, with reduced receptor diversity and increased risk of (oncogenic) translocations in ATM-deficient patients compared with healthy controls.ATM participates in a positive feedback loop in CSR, through phosphorylation of Activation Induced cytidine Deaminase (AID). The end tethering properties of ATM and 53BP1 seem to be more essential for CSR, compared with V(D)J-recombination. Clinically, ATM deficiency primarily causes antibody deficiency.</description><subject>Adaptive control</subject><subject>Adaptive immunity</subject><subject>Antibodies</subject><subject>antibody deficiency</subject><subject>Apoptosis</subject><subject>Ataxia</subject><subject>Ataxia telangiectasia</subject><subject>Ataxia telangiectasia mutated protein</subject><subject>ATM</subject><subject>Binding sites</subject><subject>Cell cycle</subject><subject>class switch recombination</subject><subject>Class switching</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA double strand break response</subject><subject>DNA repair</subject><subject>Double-strand break repair</subject><subject>Gene loci</subject><subject>Immunodeficiency</subject><subject>Immunoglobulins</subject><subject>Immunology</subject><subject>Kinases</subject><subject>Lung diseases</subject><subject>Lymphocytes</subject><subject>Mutation</subject><subject>Proteins</subject><subject>Recombination</subject><subject>Repair</subject><subject>T cell receptors</subject><subject>V(D)J recombination</subject><issn>1471-4906</issn><issn>1471-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLw0AQhxdRrK-7Jwl48dK4zyRb8FBaX1AVpJ6XzWaiG5qk7m4K_veuVD0InmYO3_xm5kPolOCUYJJdNqkNKcWUpJimGJMddEB4TsZcFmT3t8fZCB1630RA5Hm-j0aMZRmTQhygq-nyYZIsne78SgfbvSbhDZL54zSZ61a_QvIMft13HpLQJ9NKr4PdQHLftkNnw8cx2qv1ysPJdz1CLzfXy9ndePF0ez-bLsaGcx7GpS4Jl3F3zSSjIAqtqxyYkAyIgDKnQDUvS2OolFiXeSapAcNYnQnQsgB2hC62uWvXvw_gg2qtN7Ba6Q76wSsaH-a5LDCL6PkftOkH18XrFBVYME5YVkQKbynjeu8d1GrtbKvdhyJYfalVjbJBfalVmKpoLo6cfQcPZQvV78CPywhMtgBEExsLTnljoTNQWQcmqKq3_6d_Ar-rhjE</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Weitering, Thomas J.</creator><creator>Takada, Sanami</creator><creator>Weemaes, Corry M.R.</creator><creator>van Schouwenburg, Pauline A.</creator><creator>van der Burg, Mirjam</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>202104</creationdate><title>ATM: Translating the DNA Damage Response to Adaptive Immunity</title><author>Weitering, Thomas J. ; Takada, Sanami ; Weemaes, Corry M.R. ; van Schouwenburg, Pauline A. ; van der Burg, Mirjam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-bab149577f3932e58aad7e3593e15eb72e2a4bbcc2990ab7692cec33f65ea98e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Adaptive immunity</topic><topic>Antibodies</topic><topic>antibody deficiency</topic><topic>Apoptosis</topic><topic>Ataxia</topic><topic>Ataxia telangiectasia</topic><topic>Ataxia telangiectasia mutated protein</topic><topic>ATM</topic><topic>Binding sites</topic><topic>Cell cycle</topic><topic>class switch recombination</topic><topic>Class switching</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA double strand break response</topic><topic>DNA repair</topic><topic>Double-strand break repair</topic><topic>Gene loci</topic><topic>Immunodeficiency</topic><topic>Immunoglobulins</topic><topic>Immunology</topic><topic>Kinases</topic><topic>Lung diseases</topic><topic>Lymphocytes</topic><topic>Mutation</topic><topic>Proteins</topic><topic>Recombination</topic><topic>Repair</topic><topic>T cell receptors</topic><topic>V(D)J recombination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weitering, Thomas J.</creatorcontrib><creatorcontrib>Takada, Sanami</creatorcontrib><creatorcontrib>Weemaes, Corry M.R.</creatorcontrib><creatorcontrib>van Schouwenburg, Pauline A.</creatorcontrib><creatorcontrib>van der Burg, Mirjam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weitering, Thomas J.</au><au>Takada, Sanami</au><au>Weemaes, Corry M.R.</au><au>van Schouwenburg, Pauline A.</au><au>van der Burg, Mirjam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATM: Translating the DNA Damage Response to Adaptive Immunity</atitle><jtitle>Trends in immunology</jtitle><addtitle>Trends Immunol</addtitle><date>2021-04</date><risdate>2021</risdate><volume>42</volume><issue>4</issue><spage>350</spage><epage>365</epage><pages>350-365</pages><issn>1471-4906</issn><eissn>1471-4981</eissn><abstract>ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination. The functions of ATM are closely intertwined with the processes that generate immunological diversity.The ATM DNA double-stranded break (DSB) response triggers the formation of a network of recruited proteins (including the MRN complex, MDC1, 53BP1) participating in tethering the break ends together.ATM deficiency reduces DSB end tethering, coding end hairpin resolution, and repair, in V(D)J-recombination. This results in a lower success rate of V(D)J recombination, with reduced receptor diversity and increased risk of (oncogenic) translocations in ATM-deficient patients compared with healthy controls.ATM participates in a positive feedback loop in CSR, through phosphorylation of Activation Induced cytidine Deaminase (AID). The end tethering properties of ATM and 53BP1 seem to be more essential for CSR, compared with V(D)J-recombination. Clinically, ATM deficiency primarily causes antibody deficiency.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33663955</pmid><doi>10.1016/j.it.2021.02.001</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1471-4906
ispartof Trends in immunology, 2021-04, Vol.42 (4), p.350-365
issn 1471-4906
1471-4981
language eng
recordid cdi_proquest_miscellaneous_2498479803
source ScienceDirect Freedom Collection 2022-2024
subjects Adaptive control
Adaptive immunity
Antibodies
antibody deficiency
Apoptosis
Ataxia
Ataxia telangiectasia
Ataxia telangiectasia mutated protein
ATM
Binding sites
Cell cycle
class switch recombination
Class switching
Deoxyribonucleic acid
DNA
DNA damage
DNA double strand break response
DNA repair
Double-strand break repair
Gene loci
Immunodeficiency
Immunoglobulins
Immunology
Kinases
Lung diseases
Lymphocytes
Mutation
Proteins
Recombination
Repair
T cell receptors
V(D)J recombination
title ATM: Translating the DNA Damage Response to Adaptive Immunity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATM:%20Translating%20the%20DNA%20Damage%20Response%20to%20Adaptive%20Immunity&rft.jtitle=Trends%20in%20immunology&rft.au=Weitering,%20Thomas%20J.&rft.date=2021-04&rft.volume=42&rft.issue=4&rft.spage=350&rft.epage=365&rft.pages=350-365&rft.issn=1471-4906&rft.eissn=1471-4981&rft_id=info:doi/10.1016/j.it.2021.02.001&rft_dat=%3Cproquest_cross%3E2498479803%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-bab149577f3932e58aad7e3593e15eb72e2a4bbcc2990ab7692cec33f65ea98e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2505341368&rft_id=info:pmid/33663955&rfr_iscdi=true