Loading…
ATM: Translating the DNA Damage Response to Adaptive Immunity
ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB...
Saved in:
Published in: | Trends in immunology 2021-04, Vol.42 (4), p.350-365 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-bab149577f3932e58aad7e3593e15eb72e2a4bbcc2990ab7692cec33f65ea98e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-bab149577f3932e58aad7e3593e15eb72e2a4bbcc2990ab7692cec33f65ea98e3 |
container_end_page | 365 |
container_issue | 4 |
container_start_page | 350 |
container_title | Trends in immunology |
container_volume | 42 |
creator | Weitering, Thomas J. Takada, Sanami Weemaes, Corry M.R. van Schouwenburg, Pauline A. van der Burg, Mirjam |
description | ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination.
The functions of ATM are closely intertwined with the processes that generate immunological diversity.The ATM DNA double-stranded break (DSB) response triggers the formation of a network of recruited proteins (including the MRN complex, MDC1, 53BP1) participating in tethering the break ends together.ATM deficiency reduces DSB end tethering, coding end hairpin resolution, and repair, in V(D)J-recombination. This results in a lower success rate of V(D)J recombination, with reduced receptor diversity and increased risk of (oncogenic) translocations in ATM-deficient patients compared with healthy controls.ATM participates in a positive feedback loop in CSR, through phosphorylation of Activation Induced cytidine Deaminase (AID). The end tethering properties of ATM and 53BP1 seem to be more essential for CSR, compared with V(D)J-recombination. Clinically, ATM deficiency primarily causes antibody deficiency. |
doi_str_mv | 10.1016/j.it.2021.02.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2498479803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1471490621000259</els_id><sourcerecordid>2498479803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-bab149577f3932e58aad7e3593e15eb72e2a4bbcc2990ab7692cec33f65ea98e3</originalsourceid><addsrcrecordid>eNp1kMtLw0AQhxdRrK-7Jwl48dK4zyRb8FBaX1AVpJ6XzWaiG5qk7m4K_veuVD0InmYO3_xm5kPolOCUYJJdNqkNKcWUpJimGJMddEB4TsZcFmT3t8fZCB1630RA5Hm-j0aMZRmTQhygq-nyYZIsne78SgfbvSbhDZL54zSZ61a_QvIMft13HpLQJ9NKr4PdQHLftkNnw8cx2qv1ysPJdz1CLzfXy9ndePF0ez-bLsaGcx7GpS4Jl3F3zSSjIAqtqxyYkAyIgDKnQDUvS2OolFiXeSapAcNYnQnQsgB2hC62uWvXvw_gg2qtN7Ba6Q76wSsaH-a5LDCL6PkftOkH18XrFBVYME5YVkQKbynjeu8d1GrtbKvdhyJYfalVjbJBfalVmKpoLo6cfQcPZQvV78CPywhMtgBEExsLTnljoTNQWQcmqKq3_6d_Ar-rhjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505341368</pqid></control><display><type>article</type><title>ATM: Translating the DNA Damage Response to Adaptive Immunity</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Weitering, Thomas J. ; Takada, Sanami ; Weemaes, Corry M.R. ; van Schouwenburg, Pauline A. ; van der Burg, Mirjam</creator><creatorcontrib>Weitering, Thomas J. ; Takada, Sanami ; Weemaes, Corry M.R. ; van Schouwenburg, Pauline A. ; van der Burg, Mirjam</creatorcontrib><description>ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination.
The functions of ATM are closely intertwined with the processes that generate immunological diversity.The ATM DNA double-stranded break (DSB) response triggers the formation of a network of recruited proteins (including the MRN complex, MDC1, 53BP1) participating in tethering the break ends together.ATM deficiency reduces DSB end tethering, coding end hairpin resolution, and repair, in V(D)J-recombination. This results in a lower success rate of V(D)J recombination, with reduced receptor diversity and increased risk of (oncogenic) translocations in ATM-deficient patients compared with healthy controls.ATM participates in a positive feedback loop in CSR, through phosphorylation of Activation Induced cytidine Deaminase (AID). The end tethering properties of ATM and 53BP1 seem to be more essential for CSR, compared with V(D)J-recombination. Clinically, ATM deficiency primarily causes antibody deficiency.</description><identifier>ISSN: 1471-4906</identifier><identifier>EISSN: 1471-4981</identifier><identifier>DOI: 10.1016/j.it.2021.02.001</identifier><identifier>PMID: 33663955</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adaptive control ; Adaptive immunity ; Antibodies ; antibody deficiency ; Apoptosis ; Ataxia ; Ataxia telangiectasia ; Ataxia telangiectasia mutated protein ; ATM ; Binding sites ; Cell cycle ; class switch recombination ; Class switching ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA double strand break response ; DNA repair ; Double-strand break repair ; Gene loci ; Immunodeficiency ; Immunoglobulins ; Immunology ; Kinases ; Lung diseases ; Lymphocytes ; Mutation ; Proteins ; Recombination ; Repair ; T cell receptors ; V(D)J recombination</subject><ispartof>Trends in immunology, 2021-04, Vol.42 (4), p.350-365</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-bab149577f3932e58aad7e3593e15eb72e2a4bbcc2990ab7692cec33f65ea98e3</citedby><cites>FETCH-LOGICAL-c444t-bab149577f3932e58aad7e3593e15eb72e2a4bbcc2990ab7692cec33f65ea98e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33663955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weitering, Thomas J.</creatorcontrib><creatorcontrib>Takada, Sanami</creatorcontrib><creatorcontrib>Weemaes, Corry M.R.</creatorcontrib><creatorcontrib>van Schouwenburg, Pauline A.</creatorcontrib><creatorcontrib>van der Burg, Mirjam</creatorcontrib><title>ATM: Translating the DNA Damage Response to Adaptive Immunity</title><title>Trends in immunology</title><addtitle>Trends Immunol</addtitle><description>ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination.
The functions of ATM are closely intertwined with the processes that generate immunological diversity.The ATM DNA double-stranded break (DSB) response triggers the formation of a network of recruited proteins (including the MRN complex, MDC1, 53BP1) participating in tethering the break ends together.ATM deficiency reduces DSB end tethering, coding end hairpin resolution, and repair, in V(D)J-recombination. This results in a lower success rate of V(D)J recombination, with reduced receptor diversity and increased risk of (oncogenic) translocations in ATM-deficient patients compared with healthy controls.ATM participates in a positive feedback loop in CSR, through phosphorylation of Activation Induced cytidine Deaminase (AID). The end tethering properties of ATM and 53BP1 seem to be more essential for CSR, compared with V(D)J-recombination. Clinically, ATM deficiency primarily causes antibody deficiency.</description><subject>Adaptive control</subject><subject>Adaptive immunity</subject><subject>Antibodies</subject><subject>antibody deficiency</subject><subject>Apoptosis</subject><subject>Ataxia</subject><subject>Ataxia telangiectasia</subject><subject>Ataxia telangiectasia mutated protein</subject><subject>ATM</subject><subject>Binding sites</subject><subject>Cell cycle</subject><subject>class switch recombination</subject><subject>Class switching</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA double strand break response</subject><subject>DNA repair</subject><subject>Double-strand break repair</subject><subject>Gene loci</subject><subject>Immunodeficiency</subject><subject>Immunoglobulins</subject><subject>Immunology</subject><subject>Kinases</subject><subject>Lung diseases</subject><subject>Lymphocytes</subject><subject>Mutation</subject><subject>Proteins</subject><subject>Recombination</subject><subject>Repair</subject><subject>T cell receptors</subject><subject>V(D)J recombination</subject><issn>1471-4906</issn><issn>1471-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLw0AQhxdRrK-7Jwl48dK4zyRb8FBaX1AVpJ6XzWaiG5qk7m4K_veuVD0InmYO3_xm5kPolOCUYJJdNqkNKcWUpJimGJMddEB4TsZcFmT3t8fZCB1630RA5Hm-j0aMZRmTQhygq-nyYZIsne78SgfbvSbhDZL54zSZ61a_QvIMft13HpLQJ9NKr4PdQHLftkNnw8cx2qv1ysPJdz1CLzfXy9ndePF0ez-bLsaGcx7GpS4Jl3F3zSSjIAqtqxyYkAyIgDKnQDUvS2OolFiXeSapAcNYnQnQsgB2hC62uWvXvw_gg2qtN7Ba6Q76wSsaH-a5LDCL6PkftOkH18XrFBVYME5YVkQKbynjeu8d1GrtbKvdhyJYfalVjbJBfalVmKpoLo6cfQcPZQvV78CPywhMtgBEExsLTnljoTNQWQcmqKq3_6d_Ar-rhjE</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Weitering, Thomas J.</creator><creator>Takada, Sanami</creator><creator>Weemaes, Corry M.R.</creator><creator>van Schouwenburg, Pauline A.</creator><creator>van der Burg, Mirjam</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>202104</creationdate><title>ATM: Translating the DNA Damage Response to Adaptive Immunity</title><author>Weitering, Thomas J. ; Takada, Sanami ; Weemaes, Corry M.R. ; van Schouwenburg, Pauline A. ; van der Burg, Mirjam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-bab149577f3932e58aad7e3593e15eb72e2a4bbcc2990ab7692cec33f65ea98e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Adaptive immunity</topic><topic>Antibodies</topic><topic>antibody deficiency</topic><topic>Apoptosis</topic><topic>Ataxia</topic><topic>Ataxia telangiectasia</topic><topic>Ataxia telangiectasia mutated protein</topic><topic>ATM</topic><topic>Binding sites</topic><topic>Cell cycle</topic><topic>class switch recombination</topic><topic>Class switching</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA double strand break response</topic><topic>DNA repair</topic><topic>Double-strand break repair</topic><topic>Gene loci</topic><topic>Immunodeficiency</topic><topic>Immunoglobulins</topic><topic>Immunology</topic><topic>Kinases</topic><topic>Lung diseases</topic><topic>Lymphocytes</topic><topic>Mutation</topic><topic>Proteins</topic><topic>Recombination</topic><topic>Repair</topic><topic>T cell receptors</topic><topic>V(D)J recombination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weitering, Thomas J.</creatorcontrib><creatorcontrib>Takada, Sanami</creatorcontrib><creatorcontrib>Weemaes, Corry M.R.</creatorcontrib><creatorcontrib>van Schouwenburg, Pauline A.</creatorcontrib><creatorcontrib>van der Burg, Mirjam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weitering, Thomas J.</au><au>Takada, Sanami</au><au>Weemaes, Corry M.R.</au><au>van Schouwenburg, Pauline A.</au><au>van der Burg, Mirjam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATM: Translating the DNA Damage Response to Adaptive Immunity</atitle><jtitle>Trends in immunology</jtitle><addtitle>Trends Immunol</addtitle><date>2021-04</date><risdate>2021</risdate><volume>42</volume><issue>4</issue><spage>350</spage><epage>365</epage><pages>350-365</pages><issn>1471-4906</issn><eissn>1471-4981</eissn><abstract>ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination.
The functions of ATM are closely intertwined with the processes that generate immunological diversity.The ATM DNA double-stranded break (DSB) response triggers the formation of a network of recruited proteins (including the MRN complex, MDC1, 53BP1) participating in tethering the break ends together.ATM deficiency reduces DSB end tethering, coding end hairpin resolution, and repair, in V(D)J-recombination. This results in a lower success rate of V(D)J recombination, with reduced receptor diversity and increased risk of (oncogenic) translocations in ATM-deficient patients compared with healthy controls.ATM participates in a positive feedback loop in CSR, through phosphorylation of Activation Induced cytidine Deaminase (AID). The end tethering properties of ATM and 53BP1 seem to be more essential for CSR, compared with V(D)J-recombination. Clinically, ATM deficiency primarily causes antibody deficiency.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33663955</pmid><doi>10.1016/j.it.2021.02.001</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-4906 |
ispartof | Trends in immunology, 2021-04, Vol.42 (4), p.350-365 |
issn | 1471-4906 1471-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_2498479803 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Adaptive control Adaptive immunity Antibodies antibody deficiency Apoptosis Ataxia Ataxia telangiectasia Ataxia telangiectasia mutated protein ATM Binding sites Cell cycle class switch recombination Class switching Deoxyribonucleic acid DNA DNA damage DNA double strand break response DNA repair Double-strand break repair Gene loci Immunodeficiency Immunoglobulins Immunology Kinases Lung diseases Lymphocytes Mutation Proteins Recombination Repair T cell receptors V(D)J recombination |
title | ATM: Translating the DNA Damage Response to Adaptive Immunity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATM:%20Translating%20the%20DNA%20Damage%20Response%20to%20Adaptive%20Immunity&rft.jtitle=Trends%20in%20immunology&rft.au=Weitering,%20Thomas%20J.&rft.date=2021-04&rft.volume=42&rft.issue=4&rft.spage=350&rft.epage=365&rft.pages=350-365&rft.issn=1471-4906&rft.eissn=1471-4981&rft_id=info:doi/10.1016/j.it.2021.02.001&rft_dat=%3Cproquest_cross%3E2498479803%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-bab149577f3932e58aad7e3593e15eb72e2a4bbcc2990ab7692cec33f65ea98e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2505341368&rft_id=info:pmid/33663955&rfr_iscdi=true |