Loading…
Hysteresis in centrosymmetric CuPbI3perovskite halide: apolar dielectric or orientable dielectric?
We demonstrated the change in polarization behaviour at the surface/interface before and after light through Havriliak-Negami equation of lesser known CuPbI3. We have synthesized CuPbI3through cold sintering technique and the polarization mechanisms are altered by increasing (cold) sintering tempera...
Saved in:
Published in: | Journal of physics. Condensed matter 2021-04, Vol.33 (15) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 15 |
container_start_page | |
container_title | Journal of physics. Condensed matter |
container_volume | 33 |
creator | Bharti, Prem C Jha, Pardeep K Jha, Priyanka A Singh, Prabhakar |
description | We demonstrated the change in polarization behaviour at the surface/interface before and after light through Havriliak-Negami equation of lesser known CuPbI3. We have synthesized CuPbI3through cold sintering technique and the polarization mechanisms are altered by increasing (cold) sintering temperature. The structure of CuPbI3was not known and we predicted it to be hexagonal (R3̄m) with 21R prototype representation. The hysteresis is reported to be affected by ferroelectricity (reorientable dipoles with non-centrosymmetry), to inspect this a centrosymmetric CuPbI3is taken. In spite of centrosymmetry, we observed that the hysteresis area and shape ofIVcurve in AM 1.5 G sunlight shows the drastic variation with the change in polarization behaviour. Our experimental results suggest that apolar dielectric behaviour is the cause ofI-Vhysteresis rather than robust ferroelectric polarization (which was absent in the present case).We demonstrated the change in polarization behaviour at the surface/interface before and after light through Havriliak-Negami equation of lesser known CuPbI3. We have synthesized CuPbI3through cold sintering technique and the polarization mechanisms are altered by increasing (cold) sintering temperature. The structure of CuPbI3was not known and we predicted it to be hexagonal (R3̄m) with 21R prototype representation. The hysteresis is reported to be affected by ferroelectricity (reorientable dipoles with non-centrosymmetry), to inspect this a centrosymmetric CuPbI3is taken. In spite of centrosymmetry, we observed that the hysteresis area and shape ofIVcurve in AM 1.5 G sunlight shows the drastic variation with the change in polarization behaviour. Our experimental results suggest that apolar dielectric behaviour is the cause ofI-Vhysteresis rather than robust ferroelectric polarization (which was absent in the present case). |
doi_str_mv | 10.1088/1361-648X/abdb67 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2498996651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2498996651</sourcerecordid><originalsourceid>FETCH-LOGICAL-p103t-727e6e902b5edd9f4b645392ced5d1048c76380b9e47e1b5ea8281c3b20d76683</originalsourceid><addsrcrecordid>eNpNTklLAzEYDaJgrd49ztHL2GyTxYvIYG2hoAcFbyXLV4xmFpMZof_eQUUKH7zH2_gQuiT4mmClFoQJUgquXhfGeivkEZr9S8cH_BSd5fyOMeaK8Rmyq30eIEEOuQht4aAdUpf3TQNDCq6oxye7Zj2k7it_hAGKNxODh5vC9F00qfABIrifaJemC1Pf2AgHxu05OtmZmOHiD-foZXn_XK_KzePDur7blD3BbCgllSBAY2or8F7vuBW8Ypo68JUn07tOCqaw1cAlkClkFFXEMUuxl0IoNkdXv7t96j5HyMO2CdlBjKaFbsxbyrXSWoiKsG8kwFt5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498996651</pqid></control><display><type>article</type><title>Hysteresis in centrosymmetric CuPbI3perovskite halide: apolar dielectric or orientable dielectric?</title><source>Institute of Physics</source><creator>Bharti, Prem C ; Jha, Pardeep K ; Jha, Priyanka A ; Singh, Prabhakar</creator><creatorcontrib>Bharti, Prem C ; Jha, Pardeep K ; Jha, Priyanka A ; Singh, Prabhakar</creatorcontrib><description>We demonstrated the change in polarization behaviour at the surface/interface before and after light through Havriliak-Negami equation of lesser known CuPbI3. We have synthesized CuPbI3through cold sintering technique and the polarization mechanisms are altered by increasing (cold) sintering temperature. The structure of CuPbI3was not known and we predicted it to be hexagonal (R3̄m) with 21R prototype representation. The hysteresis is reported to be affected by ferroelectricity (reorientable dipoles with non-centrosymmetry), to inspect this a centrosymmetric CuPbI3is taken. In spite of centrosymmetry, we observed that the hysteresis area and shape ofIVcurve in AM 1.5 G sunlight shows the drastic variation with the change in polarization behaviour. Our experimental results suggest that apolar dielectric behaviour is the cause ofI-Vhysteresis rather than robust ferroelectric polarization (which was absent in the present case).We demonstrated the change in polarization behaviour at the surface/interface before and after light through Havriliak-Negami equation of lesser known CuPbI3. We have synthesized CuPbI3through cold sintering technique and the polarization mechanisms are altered by increasing (cold) sintering temperature. The structure of CuPbI3was not known and we predicted it to be hexagonal (R3̄m) with 21R prototype representation. The hysteresis is reported to be affected by ferroelectricity (reorientable dipoles with non-centrosymmetry), to inspect this a centrosymmetric CuPbI3is taken. In spite of centrosymmetry, we observed that the hysteresis area and shape ofIVcurve in AM 1.5 G sunlight shows the drastic variation with the change in polarization behaviour. Our experimental results suggest that apolar dielectric behaviour is the cause ofI-Vhysteresis rather than robust ferroelectric polarization (which was absent in the present case).</description><identifier>ISSN: 1361-648X</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/abdb67</identifier><language>eng</language><ispartof>Journal of physics. Condensed matter, 2021-04, Vol.33 (15)</ispartof><rights>2021 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bharti, Prem C</creatorcontrib><creatorcontrib>Jha, Pardeep K</creatorcontrib><creatorcontrib>Jha, Priyanka A</creatorcontrib><creatorcontrib>Singh, Prabhakar</creatorcontrib><title>Hysteresis in centrosymmetric CuPbI3perovskite halide: apolar dielectric or orientable dielectric?</title><title>Journal of physics. Condensed matter</title><description>We demonstrated the change in polarization behaviour at the surface/interface before and after light through Havriliak-Negami equation of lesser known CuPbI3. We have synthesized CuPbI3through cold sintering technique and the polarization mechanisms are altered by increasing (cold) sintering temperature. The structure of CuPbI3was not known and we predicted it to be hexagonal (R3̄m) with 21R prototype representation. The hysteresis is reported to be affected by ferroelectricity (reorientable dipoles with non-centrosymmetry), to inspect this a centrosymmetric CuPbI3is taken. In spite of centrosymmetry, we observed that the hysteresis area and shape ofIVcurve in AM 1.5 G sunlight shows the drastic variation with the change in polarization behaviour. Our experimental results suggest that apolar dielectric behaviour is the cause ofI-Vhysteresis rather than robust ferroelectric polarization (which was absent in the present case).We demonstrated the change in polarization behaviour at the surface/interface before and after light through Havriliak-Negami equation of lesser known CuPbI3. We have synthesized CuPbI3through cold sintering technique and the polarization mechanisms are altered by increasing (cold) sintering temperature. The structure of CuPbI3was not known and we predicted it to be hexagonal (R3̄m) with 21R prototype representation. The hysteresis is reported to be affected by ferroelectricity (reorientable dipoles with non-centrosymmetry), to inspect this a centrosymmetric CuPbI3is taken. In spite of centrosymmetry, we observed that the hysteresis area and shape ofIVcurve in AM 1.5 G sunlight shows the drastic variation with the change in polarization behaviour. Our experimental results suggest that apolar dielectric behaviour is the cause ofI-Vhysteresis rather than robust ferroelectric polarization (which was absent in the present case).</description><issn>1361-648X</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNTklLAzEYDaJgrd49ztHL2GyTxYvIYG2hoAcFbyXLV4xmFpMZof_eQUUKH7zH2_gQuiT4mmClFoQJUgquXhfGeivkEZr9S8cH_BSd5fyOMeaK8Rmyq30eIEEOuQht4aAdUpf3TQNDCq6oxye7Zj2k7it_hAGKNxODh5vC9F00qfABIrifaJemC1Pf2AgHxu05OtmZmOHiD-foZXn_XK_KzePDur7blD3BbCgllSBAY2or8F7vuBW8Ypo68JUn07tOCqaw1cAlkClkFFXEMUuxl0IoNkdXv7t96j5HyMO2CdlBjKaFbsxbyrXSWoiKsG8kwFt5</recordid><startdate>20210414</startdate><enddate>20210414</enddate><creator>Bharti, Prem C</creator><creator>Jha, Pardeep K</creator><creator>Jha, Priyanka A</creator><creator>Singh, Prabhakar</creator><scope>7X8</scope></search><sort><creationdate>20210414</creationdate><title>Hysteresis in centrosymmetric CuPbI3perovskite halide: apolar dielectric or orientable dielectric?</title><author>Bharti, Prem C ; Jha, Pardeep K ; Jha, Priyanka A ; Singh, Prabhakar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p103t-727e6e902b5edd9f4b645392ced5d1048c76380b9e47e1b5ea8281c3b20d76683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bharti, Prem C</creatorcontrib><creatorcontrib>Jha, Pardeep K</creatorcontrib><creatorcontrib>Jha, Priyanka A</creatorcontrib><creatorcontrib>Singh, Prabhakar</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bharti, Prem C</au><au>Jha, Pardeep K</au><au>Jha, Priyanka A</au><au>Singh, Prabhakar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hysteresis in centrosymmetric CuPbI3perovskite halide: apolar dielectric or orientable dielectric?</atitle><jtitle>Journal of physics. Condensed matter</jtitle><date>2021-04-14</date><risdate>2021</risdate><volume>33</volume><issue>15</issue><issn>1361-648X</issn><eissn>1361-648X</eissn><abstract>We demonstrated the change in polarization behaviour at the surface/interface before and after light through Havriliak-Negami equation of lesser known CuPbI3. We have synthesized CuPbI3through cold sintering technique and the polarization mechanisms are altered by increasing (cold) sintering temperature. The structure of CuPbI3was not known and we predicted it to be hexagonal (R3̄m) with 21R prototype representation. The hysteresis is reported to be affected by ferroelectricity (reorientable dipoles with non-centrosymmetry), to inspect this a centrosymmetric CuPbI3is taken. In spite of centrosymmetry, we observed that the hysteresis area and shape ofIVcurve in AM 1.5 G sunlight shows the drastic variation with the change in polarization behaviour. Our experimental results suggest that apolar dielectric behaviour is the cause ofI-Vhysteresis rather than robust ferroelectric polarization (which was absent in the present case).We demonstrated the change in polarization behaviour at the surface/interface before and after light through Havriliak-Negami equation of lesser known CuPbI3. We have synthesized CuPbI3through cold sintering technique and the polarization mechanisms are altered by increasing (cold) sintering temperature. The structure of CuPbI3was not known and we predicted it to be hexagonal (R3̄m) with 21R prototype representation. The hysteresis is reported to be affected by ferroelectricity (reorientable dipoles with non-centrosymmetry), to inspect this a centrosymmetric CuPbI3is taken. In spite of centrosymmetry, we observed that the hysteresis area and shape ofIVcurve in AM 1.5 G sunlight shows the drastic variation with the change in polarization behaviour. Our experimental results suggest that apolar dielectric behaviour is the cause ofI-Vhysteresis rather than robust ferroelectric polarization (which was absent in the present case).</abstract><doi>10.1088/1361-648X/abdb67</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-648X |
ispartof | Journal of physics. Condensed matter, 2021-04, Vol.33 (15) |
issn | 1361-648X 1361-648X |
language | eng |
recordid | cdi_proquest_miscellaneous_2498996651 |
source | Institute of Physics |
title | Hysteresis in centrosymmetric CuPbI3perovskite halide: apolar dielectric or orientable dielectric? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hysteresis%20in%20centrosymmetric%20CuPbI3perovskite%20halide:%20apolar%20dielectric%20or%20orientable%20dielectric?&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Bharti,%20Prem%20C&rft.date=2021-04-14&rft.volume=33&rft.issue=15&rft.issn=1361-648X&rft.eissn=1361-648X&rft_id=info:doi/10.1088/1361-648X/abdb67&rft_dat=%3Cproquest%3E2498996651%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p103t-727e6e902b5edd9f4b645392ced5d1048c76380b9e47e1b5ea8281c3b20d76683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2498996651&rft_id=info:pmid/&rfr_iscdi=true |