Loading…
Ultra‐High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage
High initial coulombic efficiency is highly desired because it implies effective interface construction and few electrolyte consumption, indicating enhanced batteries’ life and power output. In this work, a high‐capacity sodium storage material with FeS2 nanoclusters (≈1–2 nm) embedded in N, S‐doped...
Saved in:
Published in: | Angewandte Chemie International Edition 2021-05, Vol.60 (20), p.11481-11486 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4768-b06a6b852b8d44c420f87b3e026aa3af3928a47da8d539a509bdd3c6125d9ad23 |
---|---|
cites | cdi_FETCH-LOGICAL-c4768-b06a6b852b8d44c420f87b3e026aa3af3928a47da8d539a509bdd3c6125d9ad23 |
container_end_page | 11486 |
container_issue | 20 |
container_start_page | 11481 |
container_title | Angewandte Chemie International Edition |
container_volume | 60 |
creator | Wan, Yanhua Song, Keming Chen, Weihua Qin, Changdong Zhang, Xixue Zhang, Jiyu Dai, Hongliu Hu, Zhe Yan, Pengfei Liu, Chuntai Sun, Shuhui Chou, Shu‐Lei Shen, Changyu |
description | High initial coulombic efficiency is highly desired because it implies effective interface construction and few electrolyte consumption, indicating enhanced batteries’ life and power output. In this work, a high‐capacity sodium storage material with FeS2 nanoclusters (≈1–2 nm) embedded in N, S‐doped carbon matrix (FeS2/N,S‐C) was synthesized, the surface of which displays defects‐repaired characteristic and detectable dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds. After the initial discharging process, the uniform ultra‐thin NaF‐rich (≈6.0 nm) solid electrolyte interphase was obtained, thereby achieving verifiable ultra‐high initial coulombic efficiency (≈92 %). The defects‐repaired surface provides perfect platform, and the catalysis of dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds to the rapid decomposing of NaSO3CF3 and diethylene glycol dimethyl ether successfully accelerate the building of two‐dimensional ultra‐thin solid electrolyte interphase. DFT calculations further confirmed the catalysis mechanism. As a result, the constructed FeS2/N,S‐C provides high reversible capacity (749.6 mAh g−1 at 0.1 A g−1) and outstanding cycle stability (92.7 %, 10 000 cycles, 10.0 A g−1). Especially, at −15 °C, it also obtains a reversible capacity of 211.7 mAh g−1 at 10.0 A g−1. Assembled pouch‐type cell performs potential application. The insight in this work provides a bright way to interface design for performance improvement in batteries.
A defect‐repairing‐induced dot–matrix distributed interface efficiently catalyzes electrolyte decomposition. This strategy enables an ultra‐thin and robust solid–electrolyte interface achieving ultra‐high initial coulombic efficiency in sodium‐ion batteries. |
doi_str_mv | 10.1002/anie.202102368 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2499389631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521336503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-b06a6b852b8d44c420f87b3e026aa3af3928a47da8d539a509bdd3c6125d9ad23</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhUVpaf667bIYsukinurHluVlGCbNQGihSdbiSrqeKtjWRLIps-sj9BnzJNUwaQrddHXPRd89iHMIec_oglHKP8HoccEpZ5QLqV6RY1ZzVoqmEa-zroQoG1WzI3KS0kPmlaLyLTkSmZVNJY9JuO-nCE8_f137zfdiPfrJQ18sw9yHwXhbrLrOW4-j3eVHN1t0hdnLCWMHFovVuPEjYvTjJmswPabiG2y9uyhup_1a3Abn5yFvIcIGz8ibDvqE757nKbm_Wt0tr8ubr5_Xy8ub0laNVKWhEqRRNTfKVZWtOO1UYwRSLgEEdKLlCqrGgXK1aKGmrXFOWMl47VpwXJySjwffbQyPM6ZJDz5Z7HsYMcxJ86pthWqlYBk9_wd9CHMc8-80z2HmrGoqMrU4UDaGlCJ2ehv9AHGnGdX7KvS-Cv1SRT748Gw7mwHdC_4n-wy0B-CH73H3Hzt9-WW9-mv-G63_ldE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521336503</pqid></control><display><type>article</type><title>Ultra‐High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage</title><source>Wiley</source><creator>Wan, Yanhua ; Song, Keming ; Chen, Weihua ; Qin, Changdong ; Zhang, Xixue ; Zhang, Jiyu ; Dai, Hongliu ; Hu, Zhe ; Yan, Pengfei ; Liu, Chuntai ; Sun, Shuhui ; Chou, Shu‐Lei ; Shen, Changyu</creator><creatorcontrib>Wan, Yanhua ; Song, Keming ; Chen, Weihua ; Qin, Changdong ; Zhang, Xixue ; Zhang, Jiyu ; Dai, Hongliu ; Hu, Zhe ; Yan, Pengfei ; Liu, Chuntai ; Sun, Shuhui ; Chou, Shu‐Lei ; Shen, Changyu</creatorcontrib><description>High initial coulombic efficiency is highly desired because it implies effective interface construction and few electrolyte consumption, indicating enhanced batteries’ life and power output. In this work, a high‐capacity sodium storage material with FeS2 nanoclusters (≈1–2 nm) embedded in N, S‐doped carbon matrix (FeS2/N,S‐C) was synthesized, the surface of which displays defects‐repaired characteristic and detectable dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds. After the initial discharging process, the uniform ultra‐thin NaF‐rich (≈6.0 nm) solid electrolyte interphase was obtained, thereby achieving verifiable ultra‐high initial coulombic efficiency (≈92 %). The defects‐repaired surface provides perfect platform, and the catalysis of dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds to the rapid decomposing of NaSO3CF3 and diethylene glycol dimethyl ether successfully accelerate the building of two‐dimensional ultra‐thin solid electrolyte interphase. DFT calculations further confirmed the catalysis mechanism. As a result, the constructed FeS2/N,S‐C provides high reversible capacity (749.6 mAh g−1 at 0.1 A g−1) and outstanding cycle stability (92.7 %, 10 000 cycles, 10.0 A g−1). Especially, at −15 °C, it also obtains a reversible capacity of 211.7 mAh g−1 at 10.0 A g−1. Assembled pouch‐type cell performs potential application. The insight in this work provides a bright way to interface design for performance improvement in batteries.
A defect‐repairing‐induced dot–matrix distributed interface efficiently catalyzes electrolyte decomposition. This strategy enables an ultra‐thin and robust solid–electrolyte interface achieving ultra‐high initial coulombic efficiency in sodium‐ion batteries.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202102368</identifier><identifier>PMID: 33686746</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Catalysis ; Construction ; defect repair ; Defects ; Diethylene glycol ; Dimethyl ether ; Efficiency ; Electrolytes ; initial coulombic efficiency ; interface catalysis ; Interphase ; Iron sulfides ; Nanoclusters ; Power consumption ; Pyrite ; Sodium ; sodium-ion batteries ; solid electrolyte interphase ; Solid electrolytes</subject><ispartof>Angewandte Chemie International Edition, 2021-05, Vol.60 (20), p.11481-11486</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-b06a6b852b8d44c420f87b3e026aa3af3928a47da8d539a509bdd3c6125d9ad23</citedby><cites>FETCH-LOGICAL-c4768-b06a6b852b8d44c420f87b3e026aa3af3928a47da8d539a509bdd3c6125d9ad23</cites><orcidid>0000-0002-0548-330X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33686746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Yanhua</creatorcontrib><creatorcontrib>Song, Keming</creatorcontrib><creatorcontrib>Chen, Weihua</creatorcontrib><creatorcontrib>Qin, Changdong</creatorcontrib><creatorcontrib>Zhang, Xixue</creatorcontrib><creatorcontrib>Zhang, Jiyu</creatorcontrib><creatorcontrib>Dai, Hongliu</creatorcontrib><creatorcontrib>Hu, Zhe</creatorcontrib><creatorcontrib>Yan, Pengfei</creatorcontrib><creatorcontrib>Liu, Chuntai</creatorcontrib><creatorcontrib>Sun, Shuhui</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Shen, Changyu</creatorcontrib><title>Ultra‐High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>High initial coulombic efficiency is highly desired because it implies effective interface construction and few electrolyte consumption, indicating enhanced batteries’ life and power output. In this work, a high‐capacity sodium storage material with FeS2 nanoclusters (≈1–2 nm) embedded in N, S‐doped carbon matrix (FeS2/N,S‐C) was synthesized, the surface of which displays defects‐repaired characteristic and detectable dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds. After the initial discharging process, the uniform ultra‐thin NaF‐rich (≈6.0 nm) solid electrolyte interphase was obtained, thereby achieving verifiable ultra‐high initial coulombic efficiency (≈92 %). The defects‐repaired surface provides perfect platform, and the catalysis of dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds to the rapid decomposing of NaSO3CF3 and diethylene glycol dimethyl ether successfully accelerate the building of two‐dimensional ultra‐thin solid electrolyte interphase. DFT calculations further confirmed the catalysis mechanism. As a result, the constructed FeS2/N,S‐C provides high reversible capacity (749.6 mAh g−1 at 0.1 A g−1) and outstanding cycle stability (92.7 %, 10 000 cycles, 10.0 A g−1). Especially, at −15 °C, it also obtains a reversible capacity of 211.7 mAh g−1 at 10.0 A g−1. Assembled pouch‐type cell performs potential application. The insight in this work provides a bright way to interface design for performance improvement in batteries.
A defect‐repairing‐induced dot–matrix distributed interface efficiently catalyzes electrolyte decomposition. This strategy enables an ultra‐thin and robust solid–electrolyte interface achieving ultra‐high initial coulombic efficiency in sodium‐ion batteries.</description><subject>Batteries</subject><subject>Catalysis</subject><subject>Construction</subject><subject>defect repair</subject><subject>Defects</subject><subject>Diethylene glycol</subject><subject>Dimethyl ether</subject><subject>Efficiency</subject><subject>Electrolytes</subject><subject>initial coulombic efficiency</subject><subject>interface catalysis</subject><subject>Interphase</subject><subject>Iron sulfides</subject><subject>Nanoclusters</subject><subject>Power consumption</subject><subject>Pyrite</subject><subject>Sodium</subject><subject>sodium-ion batteries</subject><subject>solid electrolyte interphase</subject><subject>Solid electrolytes</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAUhUVpaf667bIYsukinurHluVlGCbNQGihSdbiSrqeKtjWRLIps-sj9BnzJNUwaQrddHXPRd89iHMIec_oglHKP8HoccEpZ5QLqV6RY1ZzVoqmEa-zroQoG1WzI3KS0kPmlaLyLTkSmZVNJY9JuO-nCE8_f137zfdiPfrJQ18sw9yHwXhbrLrOW4-j3eVHN1t0hdnLCWMHFovVuPEjYvTjJmswPabiG2y9uyhup_1a3Abn5yFvIcIGz8ibDvqE757nKbm_Wt0tr8ubr5_Xy8ub0laNVKWhEqRRNTfKVZWtOO1UYwRSLgEEdKLlCqrGgXK1aKGmrXFOWMl47VpwXJySjwffbQyPM6ZJDz5Z7HsYMcxJ86pthWqlYBk9_wd9CHMc8-80z2HmrGoqMrU4UDaGlCJ2ehv9AHGnGdX7KvS-Cv1SRT748Gw7mwHdC_4n-wy0B-CH73H3Hzt9-WW9-mv-G63_ldE</recordid><startdate>20210510</startdate><enddate>20210510</enddate><creator>Wan, Yanhua</creator><creator>Song, Keming</creator><creator>Chen, Weihua</creator><creator>Qin, Changdong</creator><creator>Zhang, Xixue</creator><creator>Zhang, Jiyu</creator><creator>Dai, Hongliu</creator><creator>Hu, Zhe</creator><creator>Yan, Pengfei</creator><creator>Liu, Chuntai</creator><creator>Sun, Shuhui</creator><creator>Chou, Shu‐Lei</creator><creator>Shen, Changyu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0548-330X</orcidid></search><sort><creationdate>20210510</creationdate><title>Ultra‐High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage</title><author>Wan, Yanhua ; Song, Keming ; Chen, Weihua ; Qin, Changdong ; Zhang, Xixue ; Zhang, Jiyu ; Dai, Hongliu ; Hu, Zhe ; Yan, Pengfei ; Liu, Chuntai ; Sun, Shuhui ; Chou, Shu‐Lei ; Shen, Changyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-b06a6b852b8d44c420f87b3e026aa3af3928a47da8d539a509bdd3c6125d9ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Catalysis</topic><topic>Construction</topic><topic>defect repair</topic><topic>Defects</topic><topic>Diethylene glycol</topic><topic>Dimethyl ether</topic><topic>Efficiency</topic><topic>Electrolytes</topic><topic>initial coulombic efficiency</topic><topic>interface catalysis</topic><topic>Interphase</topic><topic>Iron sulfides</topic><topic>Nanoclusters</topic><topic>Power consumption</topic><topic>Pyrite</topic><topic>Sodium</topic><topic>sodium-ion batteries</topic><topic>solid electrolyte interphase</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Yanhua</creatorcontrib><creatorcontrib>Song, Keming</creatorcontrib><creatorcontrib>Chen, Weihua</creatorcontrib><creatorcontrib>Qin, Changdong</creatorcontrib><creatorcontrib>Zhang, Xixue</creatorcontrib><creatorcontrib>Zhang, Jiyu</creatorcontrib><creatorcontrib>Dai, Hongliu</creatorcontrib><creatorcontrib>Hu, Zhe</creatorcontrib><creatorcontrib>Yan, Pengfei</creatorcontrib><creatorcontrib>Liu, Chuntai</creatorcontrib><creatorcontrib>Sun, Shuhui</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Shen, Changyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Yanhua</au><au>Song, Keming</au><au>Chen, Weihua</au><au>Qin, Changdong</au><au>Zhang, Xixue</au><au>Zhang, Jiyu</au><au>Dai, Hongliu</au><au>Hu, Zhe</au><au>Yan, Pengfei</au><au>Liu, Chuntai</au><au>Sun, Shuhui</au><au>Chou, Shu‐Lei</au><au>Shen, Changyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra‐High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-05-10</date><risdate>2021</risdate><volume>60</volume><issue>20</issue><spage>11481</spage><epage>11486</epage><pages>11481-11486</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>High initial coulombic efficiency is highly desired because it implies effective interface construction and few electrolyte consumption, indicating enhanced batteries’ life and power output. In this work, a high‐capacity sodium storage material with FeS2 nanoclusters (≈1–2 nm) embedded in N, S‐doped carbon matrix (FeS2/N,S‐C) was synthesized, the surface of which displays defects‐repaired characteristic and detectable dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds. After the initial discharging process, the uniform ultra‐thin NaF‐rich (≈6.0 nm) solid electrolyte interphase was obtained, thereby achieving verifiable ultra‐high initial coulombic efficiency (≈92 %). The defects‐repaired surface provides perfect platform, and the catalysis of dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds to the rapid decomposing of NaSO3CF3 and diethylene glycol dimethyl ether successfully accelerate the building of two‐dimensional ultra‐thin solid electrolyte interphase. DFT calculations further confirmed the catalysis mechanism. As a result, the constructed FeS2/N,S‐C provides high reversible capacity (749.6 mAh g−1 at 0.1 A g−1) and outstanding cycle stability (92.7 %, 10 000 cycles, 10.0 A g−1). Especially, at −15 °C, it also obtains a reversible capacity of 211.7 mAh g−1 at 10.0 A g−1. Assembled pouch‐type cell performs potential application. The insight in this work provides a bright way to interface design for performance improvement in batteries.
A defect‐repairing‐induced dot–matrix distributed interface efficiently catalyzes electrolyte decomposition. This strategy enables an ultra‐thin and robust solid–electrolyte interface achieving ultra‐high initial coulombic efficiency in sodium‐ion batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33686746</pmid><doi>10.1002/anie.202102368</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-0548-330X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2021-05, Vol.60 (20), p.11481-11486 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2499389631 |
source | Wiley |
subjects | Batteries Catalysis Construction defect repair Defects Diethylene glycol Dimethyl ether Efficiency Electrolytes initial coulombic efficiency interface catalysis Interphase Iron sulfides Nanoclusters Power consumption Pyrite Sodium sodium-ion batteries solid electrolyte interphase Solid electrolytes |
title | Ultra‐High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra%E2%80%90High%20Initial%20Coulombic%20Efficiency%20Induced%20by%20Interface%20Engineering%20Enables%20Rapid,%20Stable%20Sodium%20Storage&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wan,%20Yanhua&rft.date=2021-05-10&rft.volume=60&rft.issue=20&rft.spage=11481&rft.epage=11486&rft.pages=11481-11486&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202102368&rft_dat=%3Cproquest_cross%3E2521336503%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4768-b06a6b852b8d44c420f87b3e026aa3af3928a47da8d539a509bdd3c6125d9ad23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2521336503&rft_id=info:pmid/33686746&rfr_iscdi=true |