Loading…

Ultra‐High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage

High initial coulombic efficiency is highly desired because it implies effective interface construction and few electrolyte consumption, indicating enhanced batteries’ life and power output. In this work, a high‐capacity sodium storage material with FeS2 nanoclusters (≈1–2 nm) embedded in N, S‐doped...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2021-05, Vol.60 (20), p.11481-11486
Main Authors: Wan, Yanhua, Song, Keming, Chen, Weihua, Qin, Changdong, Zhang, Xixue, Zhang, Jiyu, Dai, Hongliu, Hu, Zhe, Yan, Pengfei, Liu, Chuntai, Sun, Shuhui, Chou, Shu‐Lei, Shen, Changyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4768-b06a6b852b8d44c420f87b3e026aa3af3928a47da8d539a509bdd3c6125d9ad23
cites cdi_FETCH-LOGICAL-c4768-b06a6b852b8d44c420f87b3e026aa3af3928a47da8d539a509bdd3c6125d9ad23
container_end_page 11486
container_issue 20
container_start_page 11481
container_title Angewandte Chemie International Edition
container_volume 60
creator Wan, Yanhua
Song, Keming
Chen, Weihua
Qin, Changdong
Zhang, Xixue
Zhang, Jiyu
Dai, Hongliu
Hu, Zhe
Yan, Pengfei
Liu, Chuntai
Sun, Shuhui
Chou, Shu‐Lei
Shen, Changyu
description High initial coulombic efficiency is highly desired because it implies effective interface construction and few electrolyte consumption, indicating enhanced batteries’ life and power output. In this work, a high‐capacity sodium storage material with FeS2 nanoclusters (≈1–2 nm) embedded in N, S‐doped carbon matrix (FeS2/N,S‐C) was synthesized, the surface of which displays defects‐repaired characteristic and detectable dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds. After the initial discharging process, the uniform ultra‐thin NaF‐rich (≈6.0 nm) solid electrolyte interphase was obtained, thereby achieving verifiable ultra‐high initial coulombic efficiency (≈92 %). The defects‐repaired surface provides perfect platform, and the catalysis of dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds to the rapid decomposing of NaSO3CF3 and diethylene glycol dimethyl ether successfully accelerate the building of two‐dimensional ultra‐thin solid electrolyte interphase. DFT calculations further confirmed the catalysis mechanism. As a result, the constructed FeS2/N,S‐C provides high reversible capacity (749.6 mAh g−1 at 0.1 A g−1) and outstanding cycle stability (92.7 %, 10 000 cycles, 10.0 A g−1). Especially, at −15 °C, it also obtains a reversible capacity of 211.7 mAh g−1 at 10.0 A g−1. Assembled pouch‐type cell performs potential application. The insight in this work provides a bright way to interface design for performance improvement in batteries. A defect‐repairing‐induced dot–matrix distributed interface efficiently catalyzes electrolyte decomposition. This strategy enables an ultra‐thin and robust solid–electrolyte interface achieving ultra‐high initial coulombic efficiency in sodium‐ion batteries.
doi_str_mv 10.1002/anie.202102368
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2499389631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2521336503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-b06a6b852b8d44c420f87b3e026aa3af3928a47da8d539a509bdd3c6125d9ad23</originalsourceid><addsrcrecordid>eNqFkc1q3DAUhUVpaf667bIYsukinurHluVlGCbNQGihSdbiSrqeKtjWRLIps-sj9BnzJNUwaQrddHXPRd89iHMIec_oglHKP8HoccEpZ5QLqV6RY1ZzVoqmEa-zroQoG1WzI3KS0kPmlaLyLTkSmZVNJY9JuO-nCE8_f137zfdiPfrJQ18sw9yHwXhbrLrOW4-j3eVHN1t0hdnLCWMHFovVuPEjYvTjJmswPabiG2y9uyhup_1a3Abn5yFvIcIGz8ibDvqE757nKbm_Wt0tr8ubr5_Xy8ub0laNVKWhEqRRNTfKVZWtOO1UYwRSLgEEdKLlCqrGgXK1aKGmrXFOWMl47VpwXJySjwffbQyPM6ZJDz5Z7HsYMcxJ86pthWqlYBk9_wd9CHMc8-80z2HmrGoqMrU4UDaGlCJ2ehv9AHGnGdX7KvS-Cv1SRT748Gw7mwHdC_4n-wy0B-CH73H3Hzt9-WW9-mv-G63_ldE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521336503</pqid></control><display><type>article</type><title>Ultra‐High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage</title><source>Wiley</source><creator>Wan, Yanhua ; Song, Keming ; Chen, Weihua ; Qin, Changdong ; Zhang, Xixue ; Zhang, Jiyu ; Dai, Hongliu ; Hu, Zhe ; Yan, Pengfei ; Liu, Chuntai ; Sun, Shuhui ; Chou, Shu‐Lei ; Shen, Changyu</creator><creatorcontrib>Wan, Yanhua ; Song, Keming ; Chen, Weihua ; Qin, Changdong ; Zhang, Xixue ; Zhang, Jiyu ; Dai, Hongliu ; Hu, Zhe ; Yan, Pengfei ; Liu, Chuntai ; Sun, Shuhui ; Chou, Shu‐Lei ; Shen, Changyu</creatorcontrib><description>High initial coulombic efficiency is highly desired because it implies effective interface construction and few electrolyte consumption, indicating enhanced batteries’ life and power output. In this work, a high‐capacity sodium storage material with FeS2 nanoclusters (≈1–2 nm) embedded in N, S‐doped carbon matrix (FeS2/N,S‐C) was synthesized, the surface of which displays defects‐repaired characteristic and detectable dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds. After the initial discharging process, the uniform ultra‐thin NaF‐rich (≈6.0 nm) solid electrolyte interphase was obtained, thereby achieving verifiable ultra‐high initial coulombic efficiency (≈92 %). The defects‐repaired surface provides perfect platform, and the catalysis of dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds to the rapid decomposing of NaSO3CF3 and diethylene glycol dimethyl ether successfully accelerate the building of two‐dimensional ultra‐thin solid electrolyte interphase. DFT calculations further confirmed the catalysis mechanism. As a result, the constructed FeS2/N,S‐C provides high reversible capacity (749.6 mAh g−1 at 0.1 A g−1) and outstanding cycle stability (92.7 %, 10 000 cycles, 10.0 A g−1). Especially, at −15 °C, it also obtains a reversible capacity of 211.7 mAh g−1 at 10.0 A g−1. Assembled pouch‐type cell performs potential application. The insight in this work provides a bright way to interface design for performance improvement in batteries. A defect‐repairing‐induced dot–matrix distributed interface efficiently catalyzes electrolyte decomposition. This strategy enables an ultra‐thin and robust solid–electrolyte interface achieving ultra‐high initial coulombic efficiency in sodium‐ion batteries.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202102368</identifier><identifier>PMID: 33686746</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Catalysis ; Construction ; defect repair ; Defects ; Diethylene glycol ; Dimethyl ether ; Efficiency ; Electrolytes ; initial coulombic efficiency ; interface catalysis ; Interphase ; Iron sulfides ; Nanoclusters ; Power consumption ; Pyrite ; Sodium ; sodium-ion batteries ; solid electrolyte interphase ; Solid electrolytes</subject><ispartof>Angewandte Chemie International Edition, 2021-05, Vol.60 (20), p.11481-11486</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-b06a6b852b8d44c420f87b3e026aa3af3928a47da8d539a509bdd3c6125d9ad23</citedby><cites>FETCH-LOGICAL-c4768-b06a6b852b8d44c420f87b3e026aa3af3928a47da8d539a509bdd3c6125d9ad23</cites><orcidid>0000-0002-0548-330X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33686746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Yanhua</creatorcontrib><creatorcontrib>Song, Keming</creatorcontrib><creatorcontrib>Chen, Weihua</creatorcontrib><creatorcontrib>Qin, Changdong</creatorcontrib><creatorcontrib>Zhang, Xixue</creatorcontrib><creatorcontrib>Zhang, Jiyu</creatorcontrib><creatorcontrib>Dai, Hongliu</creatorcontrib><creatorcontrib>Hu, Zhe</creatorcontrib><creatorcontrib>Yan, Pengfei</creatorcontrib><creatorcontrib>Liu, Chuntai</creatorcontrib><creatorcontrib>Sun, Shuhui</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Shen, Changyu</creatorcontrib><title>Ultra‐High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>High initial coulombic efficiency is highly desired because it implies effective interface construction and few electrolyte consumption, indicating enhanced batteries’ life and power output. In this work, a high‐capacity sodium storage material with FeS2 nanoclusters (≈1–2 nm) embedded in N, S‐doped carbon matrix (FeS2/N,S‐C) was synthesized, the surface of which displays defects‐repaired characteristic and detectable dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds. After the initial discharging process, the uniform ultra‐thin NaF‐rich (≈6.0 nm) solid electrolyte interphase was obtained, thereby achieving verifiable ultra‐high initial coulombic efficiency (≈92 %). The defects‐repaired surface provides perfect platform, and the catalysis of dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds to the rapid decomposing of NaSO3CF3 and diethylene glycol dimethyl ether successfully accelerate the building of two‐dimensional ultra‐thin solid electrolyte interphase. DFT calculations further confirmed the catalysis mechanism. As a result, the constructed FeS2/N,S‐C provides high reversible capacity (749.6 mAh g−1 at 0.1 A g−1) and outstanding cycle stability (92.7 %, 10 000 cycles, 10.0 A g−1). Especially, at −15 °C, it also obtains a reversible capacity of 211.7 mAh g−1 at 10.0 A g−1. Assembled pouch‐type cell performs potential application. The insight in this work provides a bright way to interface design for performance improvement in batteries. A defect‐repairing‐induced dot–matrix distributed interface efficiently catalyzes electrolyte decomposition. This strategy enables an ultra‐thin and robust solid–electrolyte interface achieving ultra‐high initial coulombic efficiency in sodium‐ion batteries.</description><subject>Batteries</subject><subject>Catalysis</subject><subject>Construction</subject><subject>defect repair</subject><subject>Defects</subject><subject>Diethylene glycol</subject><subject>Dimethyl ether</subject><subject>Efficiency</subject><subject>Electrolytes</subject><subject>initial coulombic efficiency</subject><subject>interface catalysis</subject><subject>Interphase</subject><subject>Iron sulfides</subject><subject>Nanoclusters</subject><subject>Power consumption</subject><subject>Pyrite</subject><subject>Sodium</subject><subject>sodium-ion batteries</subject><subject>solid electrolyte interphase</subject><subject>Solid electrolytes</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc1q3DAUhUVpaf667bIYsukinurHluVlGCbNQGihSdbiSrqeKtjWRLIps-sj9BnzJNUwaQrddHXPRd89iHMIec_oglHKP8HoccEpZ5QLqV6RY1ZzVoqmEa-zroQoG1WzI3KS0kPmlaLyLTkSmZVNJY9JuO-nCE8_f137zfdiPfrJQ18sw9yHwXhbrLrOW4-j3eVHN1t0hdnLCWMHFovVuPEjYvTjJmswPabiG2y9uyhup_1a3Abn5yFvIcIGz8ibDvqE757nKbm_Wt0tr8ubr5_Xy8ub0laNVKWhEqRRNTfKVZWtOO1UYwRSLgEEdKLlCqrGgXK1aKGmrXFOWMl47VpwXJySjwffbQyPM6ZJDz5Z7HsYMcxJ86pthWqlYBk9_wd9CHMc8-80z2HmrGoqMrU4UDaGlCJ2ehv9AHGnGdX7KvS-Cv1SRT748Gw7mwHdC_4n-wy0B-CH73H3Hzt9-WW9-mv-G63_ldE</recordid><startdate>20210510</startdate><enddate>20210510</enddate><creator>Wan, Yanhua</creator><creator>Song, Keming</creator><creator>Chen, Weihua</creator><creator>Qin, Changdong</creator><creator>Zhang, Xixue</creator><creator>Zhang, Jiyu</creator><creator>Dai, Hongliu</creator><creator>Hu, Zhe</creator><creator>Yan, Pengfei</creator><creator>Liu, Chuntai</creator><creator>Sun, Shuhui</creator><creator>Chou, Shu‐Lei</creator><creator>Shen, Changyu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0548-330X</orcidid></search><sort><creationdate>20210510</creationdate><title>Ultra‐High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage</title><author>Wan, Yanhua ; Song, Keming ; Chen, Weihua ; Qin, Changdong ; Zhang, Xixue ; Zhang, Jiyu ; Dai, Hongliu ; Hu, Zhe ; Yan, Pengfei ; Liu, Chuntai ; Sun, Shuhui ; Chou, Shu‐Lei ; Shen, Changyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-b06a6b852b8d44c420f87b3e026aa3af3928a47da8d539a509bdd3c6125d9ad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Catalysis</topic><topic>Construction</topic><topic>defect repair</topic><topic>Defects</topic><topic>Diethylene glycol</topic><topic>Dimethyl ether</topic><topic>Efficiency</topic><topic>Electrolytes</topic><topic>initial coulombic efficiency</topic><topic>interface catalysis</topic><topic>Interphase</topic><topic>Iron sulfides</topic><topic>Nanoclusters</topic><topic>Power consumption</topic><topic>Pyrite</topic><topic>Sodium</topic><topic>sodium-ion batteries</topic><topic>solid electrolyte interphase</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Yanhua</creatorcontrib><creatorcontrib>Song, Keming</creatorcontrib><creatorcontrib>Chen, Weihua</creatorcontrib><creatorcontrib>Qin, Changdong</creatorcontrib><creatorcontrib>Zhang, Xixue</creatorcontrib><creatorcontrib>Zhang, Jiyu</creatorcontrib><creatorcontrib>Dai, Hongliu</creatorcontrib><creatorcontrib>Hu, Zhe</creatorcontrib><creatorcontrib>Yan, Pengfei</creatorcontrib><creatorcontrib>Liu, Chuntai</creatorcontrib><creatorcontrib>Sun, Shuhui</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Shen, Changyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Yanhua</au><au>Song, Keming</au><au>Chen, Weihua</au><au>Qin, Changdong</au><au>Zhang, Xixue</au><au>Zhang, Jiyu</au><au>Dai, Hongliu</au><au>Hu, Zhe</au><au>Yan, Pengfei</au><au>Liu, Chuntai</au><au>Sun, Shuhui</au><au>Chou, Shu‐Lei</au><au>Shen, Changyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra‐High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-05-10</date><risdate>2021</risdate><volume>60</volume><issue>20</issue><spage>11481</spage><epage>11486</epage><pages>11481-11486</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>High initial coulombic efficiency is highly desired because it implies effective interface construction and few electrolyte consumption, indicating enhanced batteries’ life and power output. In this work, a high‐capacity sodium storage material with FeS2 nanoclusters (≈1–2 nm) embedded in N, S‐doped carbon matrix (FeS2/N,S‐C) was synthesized, the surface of which displays defects‐repaired characteristic and detectable dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds. After the initial discharging process, the uniform ultra‐thin NaF‐rich (≈6.0 nm) solid electrolyte interphase was obtained, thereby achieving verifiable ultra‐high initial coulombic efficiency (≈92 %). The defects‐repaired surface provides perfect platform, and the catalysis of dot‐matrix distributed Fe‐N‐C/Fe‐S‐C bonds to the rapid decomposing of NaSO3CF3 and diethylene glycol dimethyl ether successfully accelerate the building of two‐dimensional ultra‐thin solid electrolyte interphase. DFT calculations further confirmed the catalysis mechanism. As a result, the constructed FeS2/N,S‐C provides high reversible capacity (749.6 mAh g−1 at 0.1 A g−1) and outstanding cycle stability (92.7 %, 10 000 cycles, 10.0 A g−1). Especially, at −15 °C, it also obtains a reversible capacity of 211.7 mAh g−1 at 10.0 A g−1. Assembled pouch‐type cell performs potential application. The insight in this work provides a bright way to interface design for performance improvement in batteries. A defect‐repairing‐induced dot–matrix distributed interface efficiently catalyzes electrolyte decomposition. This strategy enables an ultra‐thin and robust solid–electrolyte interface achieving ultra‐high initial coulombic efficiency in sodium‐ion batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33686746</pmid><doi>10.1002/anie.202102368</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-0548-330X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2021-05, Vol.60 (20), p.11481-11486
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2499389631
source Wiley
subjects Batteries
Catalysis
Construction
defect repair
Defects
Diethylene glycol
Dimethyl ether
Efficiency
Electrolytes
initial coulombic efficiency
interface catalysis
Interphase
Iron sulfides
Nanoclusters
Power consumption
Pyrite
Sodium
sodium-ion batteries
solid electrolyte interphase
Solid electrolytes
title Ultra‐High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra%E2%80%90High%20Initial%20Coulombic%20Efficiency%20Induced%20by%20Interface%20Engineering%20Enables%20Rapid,%20Stable%20Sodium%20Storage&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wan,%20Yanhua&rft.date=2021-05-10&rft.volume=60&rft.issue=20&rft.spage=11481&rft.epage=11486&rft.pages=11481-11486&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202102368&rft_dat=%3Cproquest_cross%3E2521336503%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4768-b06a6b852b8d44c420f87b3e026aa3af3928a47da8d539a509bdd3c6125d9ad23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2521336503&rft_id=info:pmid/33686746&rfr_iscdi=true