Loading…
Simulation of proton-induced energy deposition in integrated circuits
A time-efficient simulation technique was developed for modeling the energy deposition by incident protons in modern integrated circuits. To avoid the excessive computer time required by many proton-effects simulators, a stochastic method was chosen to model the various physical effects responsible...
Saved in:
Published in: | IEEE transactions on nuclear science 1988-02, Vol.35 (1), p.981-986 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c483t-7d30227af606e77c4c0b5ad2219203136dfb5e7076d750a626e5795624f4cd593 |
---|---|
cites | cdi_FETCH-LOGICAL-c483t-7d30227af606e77c4c0b5ad2219203136dfb5e7076d750a626e5795624f4cd593 |
container_end_page | 986 |
container_issue | 1 |
container_start_page | 981 |
container_title | IEEE transactions on nuclear science |
container_volume | 35 |
creator | Fernald, K.W. Kerns, S.E. |
description | A time-efficient simulation technique was developed for modeling the energy deposition by incident protons in modern integrated circuits. To avoid the excessive computer time required by many proton-effects simulators, a stochastic method was chosen to model the various physical effects responsible for energy deposition by incident protons. Using probability density functions to describe the nuclear reactions responsible for most proton-induced memory upsets, the simulator determines the probability of a proton hit depositing the energy necessary for circuit destabilization. This factor is combined with various circuit parameters to determine the expected error-rate in a given proton environment. An analysis of transient or dose-rate effects is also performed. A comparison to experimental energy-disposition data proves the simulator to be quite accurate for predicting the expected number of events in certain integrated circuits.< > |
doi_str_mv | 10.1109/23.12869 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25012473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>12869</ieee_id><sourcerecordid>28587325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-7d30227af606e77c4c0b5ad2219203136dfb5e7076d750a626e5795624f4cd593</originalsourceid><addsrcrecordid>eNqNkM1LAzEQxYMoWKvgVfDQg4iXrZNk83WUUj-g4EE9hzTJlsh2tybZQ_97t92iR4WBYXg_3hseQpcYphiDuid0ionk6giNMGOywEzIYzQCwLJQpVKn6Cylz_4sGbARmr-FdVebHNpm0laTTWxz2xShcZ31buIbH1fbifObNoU9E3aT_Sqa3Os2RNuFnM7RSWXq5C8Oe4w-Hufvs-di8fr0MntYFLaUNBfCUSBEmIoD90LY0sKSGUcIVgQoptxVS-YFCO4EA8MJ90woxklZldYxRcfodvDt__zqfMp6HZL1dW0a33ZJE8mkoIT9DTLoiwH8L5CUgvbg3QDa2KYUfaU3MaxN3GoMete8JlTvm-_Rm4OnSdbUVTSNDemHF8A50B12PWCNSUY3OSaNlZQArM_kvXw1yMF7_xu2T_gGvDSRaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25012473</pqid></control><display><type>article</type><title>Simulation of proton-induced energy deposition in integrated circuits</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Fernald, K.W. ; Kerns, S.E.</creator><creatorcontrib>Fernald, K.W. ; Kerns, S.E.</creatorcontrib><description>A time-efficient simulation technique was developed for modeling the energy deposition by incident protons in modern integrated circuits. To avoid the excessive computer time required by many proton-effects simulators, a stochastic method was chosen to model the various physical effects responsible for energy deposition by incident protons. Using probability density functions to describe the nuclear reactions responsible for most proton-induced memory upsets, the simulator determines the probability of a proton hit depositing the energy necessary for circuit destabilization. This factor is combined with various circuit parameters to determine the expected error-rate in a given proton environment. An analysis of transient or dose-rate effects is also performed. A comparison to experimental energy-disposition data proves the simulator to be quite accurate for predicting the expected number of events in certain integrated circuits.< ></description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/23.12869</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>Legacy CDMS: IEEE</publisher><subject>Applied sciences ; Circuit simulation ; Computational modeling ; Computer simulation ; Design. Technologies. Operation analysis. Testing ; Electronics ; Electronics And Electrical Engineering ; Exact sciences and technology ; Integrated circuit modeling ; Integrated circuits ; Performance analysis ; Physics computing ; Probability density function ; Protons ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Stochastic processes ; Transient analysis</subject><ispartof>IEEE transactions on nuclear science, 1988-02, Vol.35 (1), p.981-986</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-7d30227af606e77c4c0b5ad2219203136dfb5e7076d750a626e5795624f4cd593</citedby><cites>FETCH-LOGICAL-c483t-7d30227af606e77c4c0b5ad2219203136dfb5e7076d750a626e5795624f4cd593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/12869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7066039$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernald, K.W.</creatorcontrib><creatorcontrib>Kerns, S.E.</creatorcontrib><title>Simulation of proton-induced energy deposition in integrated circuits</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>A time-efficient simulation technique was developed for modeling the energy deposition by incident protons in modern integrated circuits. To avoid the excessive computer time required by many proton-effects simulators, a stochastic method was chosen to model the various physical effects responsible for energy deposition by incident protons. Using probability density functions to describe the nuclear reactions responsible for most proton-induced memory upsets, the simulator determines the probability of a proton hit depositing the energy necessary for circuit destabilization. This factor is combined with various circuit parameters to determine the expected error-rate in a given proton environment. An analysis of transient or dose-rate effects is also performed. A comparison to experimental energy-disposition data proves the simulator to be quite accurate for predicting the expected number of events in certain integrated circuits.< ></description><subject>Applied sciences</subject><subject>Circuit simulation</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Electronics And Electrical Engineering</subject><subject>Exact sciences and technology</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>Performance analysis</subject><subject>Physics computing</subject><subject>Probability density function</subject><subject>Protons</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Stochastic processes</subject><subject>Transient analysis</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqNkM1LAzEQxYMoWKvgVfDQg4iXrZNk83WUUj-g4EE9hzTJlsh2tybZQ_97t92iR4WBYXg_3hseQpcYphiDuid0ionk6giNMGOywEzIYzQCwLJQpVKn6Cylz_4sGbARmr-FdVebHNpm0laTTWxz2xShcZ31buIbH1fbifObNoU9E3aT_Sqa3Os2RNuFnM7RSWXq5C8Oe4w-Hufvs-di8fr0MntYFLaUNBfCUSBEmIoD90LY0sKSGUcIVgQoptxVS-YFCO4EA8MJ90woxklZldYxRcfodvDt__zqfMp6HZL1dW0a33ZJE8mkoIT9DTLoiwH8L5CUgvbg3QDa2KYUfaU3MaxN3GoMete8JlTvm-_Rm4OnSdbUVTSNDemHF8A50B12PWCNSUY3OSaNlZQArM_kvXw1yMF7_xu2T_gGvDSRaQ</recordid><startdate>19880201</startdate><enddate>19880201</enddate><creator>Fernald, K.W.</creator><creator>Kerns, S.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7U5</scope></search><sort><creationdate>19880201</creationdate><title>Simulation of proton-induced energy deposition in integrated circuits</title><author>Fernald, K.W. ; Kerns, S.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-7d30227af606e77c4c0b5ad2219203136dfb5e7076d750a626e5795624f4cd593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Circuit simulation</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Electronics And Electrical Engineering</topic><topic>Exact sciences and technology</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>Performance analysis</topic><topic>Physics computing</topic><topic>Probability density function</topic><topic>Protons</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Stochastic processes</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernald, K.W.</creatorcontrib><creatorcontrib>Kerns, S.E.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernald, K.W.</au><au>Kerns, S.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of proton-induced energy deposition in integrated circuits</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>1988-02-01</date><risdate>1988</risdate><volume>35</volume><issue>1</issue><spage>981</spage><epage>986</epage><pages>981-986</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>A time-efficient simulation technique was developed for modeling the energy deposition by incident protons in modern integrated circuits. To avoid the excessive computer time required by many proton-effects simulators, a stochastic method was chosen to model the various physical effects responsible for energy deposition by incident protons. Using probability density functions to describe the nuclear reactions responsible for most proton-induced memory upsets, the simulator determines the probability of a proton hit depositing the energy necessary for circuit destabilization. This factor is combined with various circuit parameters to determine the expected error-rate in a given proton environment. An analysis of transient or dose-rate effects is also performed. A comparison to experimental energy-disposition data proves the simulator to be quite accurate for predicting the expected number of events in certain integrated circuits.< ></abstract><cop>Legacy CDMS</cop><pub>IEEE</pub><doi>10.1109/23.12869</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 1988-02, Vol.35 (1), p.981-986 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_miscellaneous_25012473 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Circuit simulation Computational modeling Computer simulation Design. Technologies. Operation analysis. Testing Electronics Electronics And Electrical Engineering Exact sciences and technology Integrated circuit modeling Integrated circuits Performance analysis Physics computing Probability density function Protons Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Stochastic processes Transient analysis |
title | Simulation of proton-induced energy deposition in integrated circuits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20proton-induced%20energy%20deposition%20in%20integrated%20circuits&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Fernald,%20K.W.&rft.date=1988-02-01&rft.volume=35&rft.issue=1&rft.spage=981&rft.epage=986&rft.pages=981-986&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/23.12869&rft_dat=%3Cproquest_cross%3E28587325%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-7d30227af606e77c4c0b5ad2219203136dfb5e7076d750a626e5795624f4cd593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25012473&rft_id=info:pmid/&rft_ieee_id=12869&rfr_iscdi=true |