Loading…

Simulation of proton-induced energy deposition in integrated circuits

A time-efficient simulation technique was developed for modeling the energy deposition by incident protons in modern integrated circuits. To avoid the excessive computer time required by many proton-effects simulators, a stochastic method was chosen to model the various physical effects responsible...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nuclear science 1988-02, Vol.35 (1), p.981-986
Main Authors: Fernald, K.W., Kerns, S.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-7d30227af606e77c4c0b5ad2219203136dfb5e7076d750a626e5795624f4cd593
cites cdi_FETCH-LOGICAL-c483t-7d30227af606e77c4c0b5ad2219203136dfb5e7076d750a626e5795624f4cd593
container_end_page 986
container_issue 1
container_start_page 981
container_title IEEE transactions on nuclear science
container_volume 35
creator Fernald, K.W.
Kerns, S.E.
description A time-efficient simulation technique was developed for modeling the energy deposition by incident protons in modern integrated circuits. To avoid the excessive computer time required by many proton-effects simulators, a stochastic method was chosen to model the various physical effects responsible for energy deposition by incident protons. Using probability density functions to describe the nuclear reactions responsible for most proton-induced memory upsets, the simulator determines the probability of a proton hit depositing the energy necessary for circuit destabilization. This factor is combined with various circuit parameters to determine the expected error-rate in a given proton environment. An analysis of transient or dose-rate effects is also performed. A comparison to experimental energy-disposition data proves the simulator to be quite accurate for predicting the expected number of events in certain integrated circuits.< >
doi_str_mv 10.1109/23.12869
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25012473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>12869</ieee_id><sourcerecordid>28587325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-7d30227af606e77c4c0b5ad2219203136dfb5e7076d750a626e5795624f4cd593</originalsourceid><addsrcrecordid>eNqNkM1LAzEQxYMoWKvgVfDQg4iXrZNk83WUUj-g4EE9hzTJlsh2tybZQ_97t92iR4WBYXg_3hseQpcYphiDuid0ionk6giNMGOywEzIYzQCwLJQpVKn6Cylz_4sGbARmr-FdVebHNpm0laTTWxz2xShcZ31buIbH1fbifObNoU9E3aT_Sqa3Os2RNuFnM7RSWXq5C8Oe4w-Hufvs-di8fr0MntYFLaUNBfCUSBEmIoD90LY0sKSGUcIVgQoptxVS-YFCO4EA8MJ90woxklZldYxRcfodvDt__zqfMp6HZL1dW0a33ZJE8mkoIT9DTLoiwH8L5CUgvbg3QDa2KYUfaU3MaxN3GoMete8JlTvm-_Rm4OnSdbUVTSNDemHF8A50B12PWCNSUY3OSaNlZQArM_kvXw1yMF7_xu2T_gGvDSRaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25012473</pqid></control><display><type>article</type><title>Simulation of proton-induced energy deposition in integrated circuits</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Fernald, K.W. ; Kerns, S.E.</creator><creatorcontrib>Fernald, K.W. ; Kerns, S.E.</creatorcontrib><description>A time-efficient simulation technique was developed for modeling the energy deposition by incident protons in modern integrated circuits. To avoid the excessive computer time required by many proton-effects simulators, a stochastic method was chosen to model the various physical effects responsible for energy deposition by incident protons. Using probability density functions to describe the nuclear reactions responsible for most proton-induced memory upsets, the simulator determines the probability of a proton hit depositing the energy necessary for circuit destabilization. This factor is combined with various circuit parameters to determine the expected error-rate in a given proton environment. An analysis of transient or dose-rate effects is also performed. A comparison to experimental energy-disposition data proves the simulator to be quite accurate for predicting the expected number of events in certain integrated circuits.&lt; &gt;</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/23.12869</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>Legacy CDMS: IEEE</publisher><subject>Applied sciences ; Circuit simulation ; Computational modeling ; Computer simulation ; Design. Technologies. Operation analysis. Testing ; Electronics ; Electronics And Electrical Engineering ; Exact sciences and technology ; Integrated circuit modeling ; Integrated circuits ; Performance analysis ; Physics computing ; Probability density function ; Protons ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Stochastic processes ; Transient analysis</subject><ispartof>IEEE transactions on nuclear science, 1988-02, Vol.35 (1), p.981-986</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-7d30227af606e77c4c0b5ad2219203136dfb5e7076d750a626e5795624f4cd593</citedby><cites>FETCH-LOGICAL-c483t-7d30227af606e77c4c0b5ad2219203136dfb5e7076d750a626e5795624f4cd593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/12869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7066039$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernald, K.W.</creatorcontrib><creatorcontrib>Kerns, S.E.</creatorcontrib><title>Simulation of proton-induced energy deposition in integrated circuits</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>A time-efficient simulation technique was developed for modeling the energy deposition by incident protons in modern integrated circuits. To avoid the excessive computer time required by many proton-effects simulators, a stochastic method was chosen to model the various physical effects responsible for energy deposition by incident protons. Using probability density functions to describe the nuclear reactions responsible for most proton-induced memory upsets, the simulator determines the probability of a proton hit depositing the energy necessary for circuit destabilization. This factor is combined with various circuit parameters to determine the expected error-rate in a given proton environment. An analysis of transient or dose-rate effects is also performed. A comparison to experimental energy-disposition data proves the simulator to be quite accurate for predicting the expected number of events in certain integrated circuits.&lt; &gt;</description><subject>Applied sciences</subject><subject>Circuit simulation</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Electronics And Electrical Engineering</subject><subject>Exact sciences and technology</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>Performance analysis</subject><subject>Physics computing</subject><subject>Probability density function</subject><subject>Protons</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Stochastic processes</subject><subject>Transient analysis</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqNkM1LAzEQxYMoWKvgVfDQg4iXrZNk83WUUj-g4EE9hzTJlsh2tybZQ_97t92iR4WBYXg_3hseQpcYphiDuid0ionk6giNMGOywEzIYzQCwLJQpVKn6Cylz_4sGbARmr-FdVebHNpm0laTTWxz2xShcZ31buIbH1fbifObNoU9E3aT_Sqa3Os2RNuFnM7RSWXq5C8Oe4w-Hufvs-di8fr0MntYFLaUNBfCUSBEmIoD90LY0sKSGUcIVgQoptxVS-YFCO4EA8MJ90woxklZldYxRcfodvDt__zqfMp6HZL1dW0a33ZJE8mkoIT9DTLoiwH8L5CUgvbg3QDa2KYUfaU3MaxN3GoMete8JlTvm-_Rm4OnSdbUVTSNDemHF8A50B12PWCNSUY3OSaNlZQArM_kvXw1yMF7_xu2T_gGvDSRaQ</recordid><startdate>19880201</startdate><enddate>19880201</enddate><creator>Fernald, K.W.</creator><creator>Kerns, S.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>7U5</scope></search><sort><creationdate>19880201</creationdate><title>Simulation of proton-induced energy deposition in integrated circuits</title><author>Fernald, K.W. ; Kerns, S.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-7d30227af606e77c4c0b5ad2219203136dfb5e7076d750a626e5795624f4cd593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Circuit simulation</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Electronics And Electrical Engineering</topic><topic>Exact sciences and technology</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>Performance analysis</topic><topic>Physics computing</topic><topic>Probability density function</topic><topic>Protons</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Stochastic processes</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernald, K.W.</creatorcontrib><creatorcontrib>Kerns, S.E.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernald, K.W.</au><au>Kerns, S.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of proton-induced energy deposition in integrated circuits</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>1988-02-01</date><risdate>1988</risdate><volume>35</volume><issue>1</issue><spage>981</spage><epage>986</epage><pages>981-986</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>A time-efficient simulation technique was developed for modeling the energy deposition by incident protons in modern integrated circuits. To avoid the excessive computer time required by many proton-effects simulators, a stochastic method was chosen to model the various physical effects responsible for energy deposition by incident protons. Using probability density functions to describe the nuclear reactions responsible for most proton-induced memory upsets, the simulator determines the probability of a proton hit depositing the energy necessary for circuit destabilization. This factor is combined with various circuit parameters to determine the expected error-rate in a given proton environment. An analysis of transient or dose-rate effects is also performed. A comparison to experimental energy-disposition data proves the simulator to be quite accurate for predicting the expected number of events in certain integrated circuits.&lt; &gt;</abstract><cop>Legacy CDMS</cop><pub>IEEE</pub><doi>10.1109/23.12869</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 1988-02, Vol.35 (1), p.981-986
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_miscellaneous_25012473
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Circuit simulation
Computational modeling
Computer simulation
Design. Technologies. Operation analysis. Testing
Electronics
Electronics And Electrical Engineering
Exact sciences and technology
Integrated circuit modeling
Integrated circuits
Performance analysis
Physics computing
Probability density function
Protons
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Stochastic processes
Transient analysis
title Simulation of proton-induced energy deposition in integrated circuits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20proton-induced%20energy%20deposition%20in%20integrated%20circuits&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Fernald,%20K.W.&rft.date=1988-02-01&rft.volume=35&rft.issue=1&rft.spage=981&rft.epage=986&rft.pages=981-986&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/23.12869&rft_dat=%3Cproquest_cross%3E28587325%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-7d30227af606e77c4c0b5ad2219203136dfb5e7076d750a626e5795624f4cd593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25012473&rft_id=info:pmid/&rft_ieee_id=12869&rfr_iscdi=true