Loading…

A Doubly Kinetically-Gated Information Ratchet Autonomously Driven by Carbodiimide Hydration

We report a rotaxane-based information ratchet in which the macrocycle distribution is pumped away from equilibrium using a carbodiimide fuel. A carboxylate group on the axle, nonequidistant between two macrocycle binding sites, efficiently catalyzes the hydration of a carbodiimide fuel to the corre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2021-03, Vol.143 (11), p.4414-4420
Main Authors: Borsley, Stefan, Leigh, David A, Roberts, Benjamin M. W
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a rotaxane-based information ratchet in which the macrocycle distribution is pumped away from equilibrium using a carbodiimide fuel. A carboxylate group on the axle, nonequidistant between two macrocycle binding sites, efficiently catalyzes the hydration of a carbodiimide fuel to the corresponding urea waste, with >80% of the fuel molecules reacting through the machine-catalyzed pathway. The energy of the reaction is harnessed by kinetic differentiation of the mechanical states of the machine driving the macrocycle to the binding site distal to the catalyst. Steric hindrance between the macrocycle and the fuel slows the reaction of the carboxylate group (to form a barrier to macrocycle movement) in the proximal co-conformer, whereas hydrogen bonding between the macrocycle and the barrier accelerates hydrolysis of the activated ester proximal isomer. The two directionally biased processes reinforce each other’s effect, resulting in a doubly kinetically gated ratchet that achieves 1:18 directionality, an exceptional degree of selectivity for a synthetic chemically fueled molecular motor.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.1c01172