Loading…
Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases
Self-organizing tissues resembling brain structures generated from human stem cells offer exciting possibilities to study human brain development, disease, and evolution. These 3D models are complex and can contain cells at various stages of differentiation from different brain regions. Single-cell...
Saved in:
Published in: | Cell stem cell 2021-06, Vol.28 (6), p.1148-1159.e8 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-32b886d14a547044eeca681db6c67cf4e67259b3c861b4f8d8bc1e3cbdf7bcae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-32b886d14a547044eeca681db6c67cf4e67259b3c861b4f8d8bc1e3cbdf7bcae3 |
container_end_page | 1159.e8 |
container_issue | 6 |
container_start_page | 1148 |
container_title | Cell stem cell |
container_volume | 28 |
creator | Fleck, Jonas Simon Sanchís-Calleja, Fátima He, Zhisong Santel, Malgorzata Boyle, Michael James Camp, J. Gray Treutlein, Barbara |
description | Self-organizing tissues resembling brain structures generated from human stem cells offer exciting possibilities to study human brain development, disease, and evolution. These 3D models are complex and can contain cells at various stages of differentiation from different brain regions. Single-cell genomic methods provide powerful approaches to explore cell composition, differentiation trajectories, and genetic perturbations in brain organoid systems. However, it remains a major challenge to understand the heterogeneity observed within and between individual organoids. Here, we develop a set of computational tools (VoxHunt) to assess brain organoid patterning, developmental state, and cell identity through comparisons to spatial and single-cell transcriptome reference datasets. We use VoxHunt to characterize and visualize cell compositions using single-cell and bulk genomic data from multiple organoid protocols modeling different brain structures. VoxHunt will be useful to assess organoid engineering protocols and to annotate cell fates that emerge in organoids during genetic and environmental perturbation experiments.
[Display omitted]
•Computational toolkit to explore and visualize Allen Brain Atlas data•Annotation of brain organoid single-cell genomic data via reference atlas queries•Bulk transcriptome deconvolution through spatial brain map comparisons•Multiplexed patterning screens to dissect the effect of morphogens
Organoid tissues resembling parts of the human brain can be grown from stem cells. Treutlein, Camp, and colleagues develop a computational toolkit to explore the types of cells that are present in brain organoids by comparing gene features of individual organoid cells to primary brain atlases. |
doi_str_mv | 10.1016/j.stem.2021.02.015 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2501266985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590921000655</els_id><sourcerecordid>2501266985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-32b886d14a547044eeca681db6c67cf4e67259b3c861b4f8d8bc1e3cbdf7bcae3</originalsourceid><addsrcrecordid>eNp9kM1KJDEURoMotvb4Ai4kSzdVJqmqJAVuBlFHaBBkZh3yc6tJU1Vpk7Tg20-K1lnO5uYuzvdxcxC6pqSmhPK7XZ0yTDUjjNaE1YR2J-iCStFVvRDitOx901ZdT_oVukxpR0gnKBHnaNU0glIm2QWyb5DC-OHnLQ5xq-fgHTZR-xlH2PowY-9gzj57SNh84knv9wubyhihsjCOeAtzmLzFTmeNcyjBASLMFrDOo06QfqCzQY8Jrr7eNfrz9Pj74Ve1eX1-efi5qWxLSK4aZqTkjra6awVpWwCruaTOcMuFHVrggnW9aazk1LSDdNJYCo01bhDGamjW6PbYu4_h_QApq8mn5UQ9QzgkxTpCGee97ArKjqiNIaVysdpHP-n4qShRi1y1U4tctchVhKkit4RuvvoPZgL3L_JtswD3RwDKLz88RJWsX0w4H8Fm5YL_X_9fzZSNQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501266985</pqid></control><display><type>article</type><title>Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Fleck, Jonas Simon ; Sanchís-Calleja, Fátima ; He, Zhisong ; Santel, Malgorzata ; Boyle, Michael James ; Camp, J. Gray ; Treutlein, Barbara</creator><creatorcontrib>Fleck, Jonas Simon ; Sanchís-Calleja, Fátima ; He, Zhisong ; Santel, Malgorzata ; Boyle, Michael James ; Camp, J. Gray ; Treutlein, Barbara</creatorcontrib><description>Self-organizing tissues resembling brain structures generated from human stem cells offer exciting possibilities to study human brain development, disease, and evolution. These 3D models are complex and can contain cells at various stages of differentiation from different brain regions. Single-cell genomic methods provide powerful approaches to explore cell composition, differentiation trajectories, and genetic perturbations in brain organoid systems. However, it remains a major challenge to understand the heterogeneity observed within and between individual organoids. Here, we develop a set of computational tools (VoxHunt) to assess brain organoid patterning, developmental state, and cell identity through comparisons to spatial and single-cell transcriptome reference datasets. We use VoxHunt to characterize and visualize cell compositions using single-cell and bulk genomic data from multiple organoid protocols modeling different brain structures. VoxHunt will be useful to assess organoid engineering protocols and to annotate cell fates that emerge in organoids during genetic and environmental perturbation experiments.
[Display omitted]
•Computational toolkit to explore and visualize Allen Brain Atlas data•Annotation of brain organoid single-cell genomic data via reference atlas queries•Bulk transcriptome deconvolution through spatial brain map comparisons•Multiplexed patterning screens to dissect the effect of morphogens
Organoid tissues resembling parts of the human brain can be grown from stem cells. Treutlein, Camp, and colleagues develop a computational toolkit to explore the types of cells that are present in brain organoids by comparing gene features of individual organoid cells to primary brain atlases.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2021.02.015</identifier><identifier>PMID: 33711282</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>annotation ; brain ; celltype ; deconvolution ; development ; morphogens ; organoids ; patterning ; scRNA-seq ; toolkit</subject><ispartof>Cell stem cell, 2021-06, Vol.28 (6), p.1148-1159.e8</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-32b886d14a547044eeca681db6c67cf4e67259b3c861b4f8d8bc1e3cbdf7bcae3</citedby><cites>FETCH-LOGICAL-c400t-32b886d14a547044eeca681db6c67cf4e67259b3c861b4f8d8bc1e3cbdf7bcae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33711282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fleck, Jonas Simon</creatorcontrib><creatorcontrib>Sanchís-Calleja, Fátima</creatorcontrib><creatorcontrib>He, Zhisong</creatorcontrib><creatorcontrib>Santel, Malgorzata</creatorcontrib><creatorcontrib>Boyle, Michael James</creatorcontrib><creatorcontrib>Camp, J. Gray</creatorcontrib><creatorcontrib>Treutlein, Barbara</creatorcontrib><title>Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Self-organizing tissues resembling brain structures generated from human stem cells offer exciting possibilities to study human brain development, disease, and evolution. These 3D models are complex and can contain cells at various stages of differentiation from different brain regions. Single-cell genomic methods provide powerful approaches to explore cell composition, differentiation trajectories, and genetic perturbations in brain organoid systems. However, it remains a major challenge to understand the heterogeneity observed within and between individual organoids. Here, we develop a set of computational tools (VoxHunt) to assess brain organoid patterning, developmental state, and cell identity through comparisons to spatial and single-cell transcriptome reference datasets. We use VoxHunt to characterize and visualize cell compositions using single-cell and bulk genomic data from multiple organoid protocols modeling different brain structures. VoxHunt will be useful to assess organoid engineering protocols and to annotate cell fates that emerge in organoids during genetic and environmental perturbation experiments.
[Display omitted]
•Computational toolkit to explore and visualize Allen Brain Atlas data•Annotation of brain organoid single-cell genomic data via reference atlas queries•Bulk transcriptome deconvolution through spatial brain map comparisons•Multiplexed patterning screens to dissect the effect of morphogens
Organoid tissues resembling parts of the human brain can be grown from stem cells. Treutlein, Camp, and colleagues develop a computational toolkit to explore the types of cells that are present in brain organoids by comparing gene features of individual organoid cells to primary brain atlases.</description><subject>annotation</subject><subject>brain</subject><subject>celltype</subject><subject>deconvolution</subject><subject>development</subject><subject>morphogens</subject><subject>organoids</subject><subject>patterning</subject><subject>scRNA-seq</subject><subject>toolkit</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KJDEURoMotvb4Ai4kSzdVJqmqJAVuBlFHaBBkZh3yc6tJU1Vpk7Tg20-K1lnO5uYuzvdxcxC6pqSmhPK7XZ0yTDUjjNaE1YR2J-iCStFVvRDitOx901ZdT_oVukxpR0gnKBHnaNU0glIm2QWyb5DC-OHnLQ5xq-fgHTZR-xlH2PowY-9gzj57SNh84knv9wubyhihsjCOeAtzmLzFTmeNcyjBASLMFrDOo06QfqCzQY8Jrr7eNfrz9Pj74Ve1eX1-efi5qWxLSK4aZqTkjra6awVpWwCruaTOcMuFHVrggnW9aazk1LSDdNJYCo01bhDGamjW6PbYu4_h_QApq8mn5UQ9QzgkxTpCGee97ArKjqiNIaVysdpHP-n4qShRi1y1U4tctchVhKkit4RuvvoPZgL3L_JtswD3RwDKLz88RJWsX0w4H8Fm5YL_X_9fzZSNQA</recordid><startdate>20210603</startdate><enddate>20210603</enddate><creator>Fleck, Jonas Simon</creator><creator>Sanchís-Calleja, Fátima</creator><creator>He, Zhisong</creator><creator>Santel, Malgorzata</creator><creator>Boyle, Michael James</creator><creator>Camp, J. Gray</creator><creator>Treutlein, Barbara</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210603</creationdate><title>Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases</title><author>Fleck, Jonas Simon ; Sanchís-Calleja, Fátima ; He, Zhisong ; Santel, Malgorzata ; Boyle, Michael James ; Camp, J. Gray ; Treutlein, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-32b886d14a547044eeca681db6c67cf4e67259b3c861b4f8d8bc1e3cbdf7bcae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>annotation</topic><topic>brain</topic><topic>celltype</topic><topic>deconvolution</topic><topic>development</topic><topic>morphogens</topic><topic>organoids</topic><topic>patterning</topic><topic>scRNA-seq</topic><topic>toolkit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleck, Jonas Simon</creatorcontrib><creatorcontrib>Sanchís-Calleja, Fátima</creatorcontrib><creatorcontrib>He, Zhisong</creatorcontrib><creatorcontrib>Santel, Malgorzata</creatorcontrib><creatorcontrib>Boyle, Michael James</creatorcontrib><creatorcontrib>Camp, J. Gray</creatorcontrib><creatorcontrib>Treutlein, Barbara</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleck, Jonas Simon</au><au>Sanchís-Calleja, Fátima</au><au>He, Zhisong</au><au>Santel, Malgorzata</au><au>Boyle, Michael James</au><au>Camp, J. Gray</au><au>Treutlein, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2021-06-03</date><risdate>2021</risdate><volume>28</volume><issue>6</issue><spage>1148</spage><epage>1159.e8</epage><pages>1148-1159.e8</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Self-organizing tissues resembling brain structures generated from human stem cells offer exciting possibilities to study human brain development, disease, and evolution. These 3D models are complex and can contain cells at various stages of differentiation from different brain regions. Single-cell genomic methods provide powerful approaches to explore cell composition, differentiation trajectories, and genetic perturbations in brain organoid systems. However, it remains a major challenge to understand the heterogeneity observed within and between individual organoids. Here, we develop a set of computational tools (VoxHunt) to assess brain organoid patterning, developmental state, and cell identity through comparisons to spatial and single-cell transcriptome reference datasets. We use VoxHunt to characterize and visualize cell compositions using single-cell and bulk genomic data from multiple organoid protocols modeling different brain structures. VoxHunt will be useful to assess organoid engineering protocols and to annotate cell fates that emerge in organoids during genetic and environmental perturbation experiments.
[Display omitted]
•Computational toolkit to explore and visualize Allen Brain Atlas data•Annotation of brain organoid single-cell genomic data via reference atlas queries•Bulk transcriptome deconvolution through spatial brain map comparisons•Multiplexed patterning screens to dissect the effect of morphogens
Organoid tissues resembling parts of the human brain can be grown from stem cells. Treutlein, Camp, and colleagues develop a computational toolkit to explore the types of cells that are present in brain organoids by comparing gene features of individual organoid cells to primary brain atlases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33711282</pmid><doi>10.1016/j.stem.2021.02.015</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-5909 |
ispartof | Cell stem cell, 2021-06, Vol.28 (6), p.1148-1159.e8 |
issn | 1934-5909 1875-9777 |
language | eng |
recordid | cdi_proquest_miscellaneous_2501266985 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | annotation brain celltype deconvolution development morphogens organoids patterning scRNA-seq toolkit |
title | Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20organoid%20brain%20region%20identities%20by%20mapping%20single-cell%20genomic%20data%20to%20reference%20atlases&rft.jtitle=Cell%20stem%20cell&rft.au=Fleck,%20Jonas%20Simon&rft.date=2021-06-03&rft.volume=28&rft.issue=6&rft.spage=1148&rft.epage=1159.e8&rft.pages=1148-1159.e8&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2021.02.015&rft_dat=%3Cproquest_cross%3E2501266985%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-32b886d14a547044eeca681db6c67cf4e67259b3c861b4f8d8bc1e3cbdf7bcae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501266985&rft_id=info:pmid/33711282&rfr_iscdi=true |