Loading…

Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases

Self-organizing tissues resembling brain structures generated from human stem cells offer exciting possibilities to study human brain development, disease, and evolution. These 3D models are complex and can contain cells at various stages of differentiation from different brain regions. Single-cell...

Full description

Saved in:
Bibliographic Details
Published in:Cell stem cell 2021-06, Vol.28 (6), p.1148-1159.e8
Main Authors: Fleck, Jonas Simon, Sanchís-Calleja, Fátima, He, Zhisong, Santel, Malgorzata, Boyle, Michael James, Camp, J. Gray, Treutlein, Barbara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-32b886d14a547044eeca681db6c67cf4e67259b3c861b4f8d8bc1e3cbdf7bcae3
cites cdi_FETCH-LOGICAL-c400t-32b886d14a547044eeca681db6c67cf4e67259b3c861b4f8d8bc1e3cbdf7bcae3
container_end_page 1159.e8
container_issue 6
container_start_page 1148
container_title Cell stem cell
container_volume 28
creator Fleck, Jonas Simon
Sanchís-Calleja, Fátima
He, Zhisong
Santel, Malgorzata
Boyle, Michael James
Camp, J. Gray
Treutlein, Barbara
description Self-organizing tissues resembling brain structures generated from human stem cells offer exciting possibilities to study human brain development, disease, and evolution. These 3D models are complex and can contain cells at various stages of differentiation from different brain regions. Single-cell genomic methods provide powerful approaches to explore cell composition, differentiation trajectories, and genetic perturbations in brain organoid systems. However, it remains a major challenge to understand the heterogeneity observed within and between individual organoids. Here, we develop a set of computational tools (VoxHunt) to assess brain organoid patterning, developmental state, and cell identity through comparisons to spatial and single-cell transcriptome reference datasets. We use VoxHunt to characterize and visualize cell compositions using single-cell and bulk genomic data from multiple organoid protocols modeling different brain structures. VoxHunt will be useful to assess organoid engineering protocols and to annotate cell fates that emerge in organoids during genetic and environmental perturbation experiments. [Display omitted] •Computational toolkit to explore and visualize Allen Brain Atlas data•Annotation of brain organoid single-cell genomic data via reference atlas queries•Bulk transcriptome deconvolution through spatial brain map comparisons•Multiplexed patterning screens to dissect the effect of morphogens Organoid tissues resembling parts of the human brain can be grown from stem cells. Treutlein, Camp, and colleagues develop a computational toolkit to explore the types of cells that are present in brain organoids by comparing gene features of individual organoid cells to primary brain atlases.
doi_str_mv 10.1016/j.stem.2021.02.015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2501266985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590921000655</els_id><sourcerecordid>2501266985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-32b886d14a547044eeca681db6c67cf4e67259b3c861b4f8d8bc1e3cbdf7bcae3</originalsourceid><addsrcrecordid>eNp9kM1KJDEURoMotvb4Ai4kSzdVJqmqJAVuBlFHaBBkZh3yc6tJU1Vpk7Tg20-K1lnO5uYuzvdxcxC6pqSmhPK7XZ0yTDUjjNaE1YR2J-iCStFVvRDitOx901ZdT_oVukxpR0gnKBHnaNU0glIm2QWyb5DC-OHnLQ5xq-fgHTZR-xlH2PowY-9gzj57SNh84knv9wubyhihsjCOeAtzmLzFTmeNcyjBASLMFrDOo06QfqCzQY8Jrr7eNfrz9Pj74Ve1eX1-efi5qWxLSK4aZqTkjra6awVpWwCruaTOcMuFHVrggnW9aazk1LSDdNJYCo01bhDGamjW6PbYu4_h_QApq8mn5UQ9QzgkxTpCGee97ArKjqiNIaVysdpHP-n4qShRi1y1U4tctchVhKkit4RuvvoPZgL3L_JtswD3RwDKLz88RJWsX0w4H8Fm5YL_X_9fzZSNQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501266985</pqid></control><display><type>article</type><title>Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Fleck, Jonas Simon ; Sanchís-Calleja, Fátima ; He, Zhisong ; Santel, Malgorzata ; Boyle, Michael James ; Camp, J. Gray ; Treutlein, Barbara</creator><creatorcontrib>Fleck, Jonas Simon ; Sanchís-Calleja, Fátima ; He, Zhisong ; Santel, Malgorzata ; Boyle, Michael James ; Camp, J. Gray ; Treutlein, Barbara</creatorcontrib><description>Self-organizing tissues resembling brain structures generated from human stem cells offer exciting possibilities to study human brain development, disease, and evolution. These 3D models are complex and can contain cells at various stages of differentiation from different brain regions. Single-cell genomic methods provide powerful approaches to explore cell composition, differentiation trajectories, and genetic perturbations in brain organoid systems. However, it remains a major challenge to understand the heterogeneity observed within and between individual organoids. Here, we develop a set of computational tools (VoxHunt) to assess brain organoid patterning, developmental state, and cell identity through comparisons to spatial and single-cell transcriptome reference datasets. We use VoxHunt to characterize and visualize cell compositions using single-cell and bulk genomic data from multiple organoid protocols modeling different brain structures. VoxHunt will be useful to assess organoid engineering protocols and to annotate cell fates that emerge in organoids during genetic and environmental perturbation experiments. [Display omitted] •Computational toolkit to explore and visualize Allen Brain Atlas data•Annotation of brain organoid single-cell genomic data via reference atlas queries•Bulk transcriptome deconvolution through spatial brain map comparisons•Multiplexed patterning screens to dissect the effect of morphogens Organoid tissues resembling parts of the human brain can be grown from stem cells. Treutlein, Camp, and colleagues develop a computational toolkit to explore the types of cells that are present in brain organoids by comparing gene features of individual organoid cells to primary brain atlases.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2021.02.015</identifier><identifier>PMID: 33711282</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>annotation ; brain ; celltype ; deconvolution ; development ; morphogens ; organoids ; patterning ; scRNA-seq ; toolkit</subject><ispartof>Cell stem cell, 2021-06, Vol.28 (6), p.1148-1159.e8</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-32b886d14a547044eeca681db6c67cf4e67259b3c861b4f8d8bc1e3cbdf7bcae3</citedby><cites>FETCH-LOGICAL-c400t-32b886d14a547044eeca681db6c67cf4e67259b3c861b4f8d8bc1e3cbdf7bcae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33711282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fleck, Jonas Simon</creatorcontrib><creatorcontrib>Sanchís-Calleja, Fátima</creatorcontrib><creatorcontrib>He, Zhisong</creatorcontrib><creatorcontrib>Santel, Malgorzata</creatorcontrib><creatorcontrib>Boyle, Michael James</creatorcontrib><creatorcontrib>Camp, J. Gray</creatorcontrib><creatorcontrib>Treutlein, Barbara</creatorcontrib><title>Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Self-organizing tissues resembling brain structures generated from human stem cells offer exciting possibilities to study human brain development, disease, and evolution. These 3D models are complex and can contain cells at various stages of differentiation from different brain regions. Single-cell genomic methods provide powerful approaches to explore cell composition, differentiation trajectories, and genetic perturbations in brain organoid systems. However, it remains a major challenge to understand the heterogeneity observed within and between individual organoids. Here, we develop a set of computational tools (VoxHunt) to assess brain organoid patterning, developmental state, and cell identity through comparisons to spatial and single-cell transcriptome reference datasets. We use VoxHunt to characterize and visualize cell compositions using single-cell and bulk genomic data from multiple organoid protocols modeling different brain structures. VoxHunt will be useful to assess organoid engineering protocols and to annotate cell fates that emerge in organoids during genetic and environmental perturbation experiments. [Display omitted] •Computational toolkit to explore and visualize Allen Brain Atlas data•Annotation of brain organoid single-cell genomic data via reference atlas queries•Bulk transcriptome deconvolution through spatial brain map comparisons•Multiplexed patterning screens to dissect the effect of morphogens Organoid tissues resembling parts of the human brain can be grown from stem cells. Treutlein, Camp, and colleagues develop a computational toolkit to explore the types of cells that are present in brain organoids by comparing gene features of individual organoid cells to primary brain atlases.</description><subject>annotation</subject><subject>brain</subject><subject>celltype</subject><subject>deconvolution</subject><subject>development</subject><subject>morphogens</subject><subject>organoids</subject><subject>patterning</subject><subject>scRNA-seq</subject><subject>toolkit</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KJDEURoMotvb4Ai4kSzdVJqmqJAVuBlFHaBBkZh3yc6tJU1Vpk7Tg20-K1lnO5uYuzvdxcxC6pqSmhPK7XZ0yTDUjjNaE1YR2J-iCStFVvRDitOx901ZdT_oVukxpR0gnKBHnaNU0glIm2QWyb5DC-OHnLQ5xq-fgHTZR-xlH2PowY-9gzj57SNh84knv9wubyhihsjCOeAtzmLzFTmeNcyjBASLMFrDOo06QfqCzQY8Jrr7eNfrz9Pj74Ve1eX1-efi5qWxLSK4aZqTkjra6awVpWwCruaTOcMuFHVrggnW9aazk1LSDdNJYCo01bhDGamjW6PbYu4_h_QApq8mn5UQ9QzgkxTpCGee97ArKjqiNIaVysdpHP-n4qShRi1y1U4tctchVhKkit4RuvvoPZgL3L_JtswD3RwDKLz88RJWsX0w4H8Fm5YL_X_9fzZSNQA</recordid><startdate>20210603</startdate><enddate>20210603</enddate><creator>Fleck, Jonas Simon</creator><creator>Sanchís-Calleja, Fátima</creator><creator>He, Zhisong</creator><creator>Santel, Malgorzata</creator><creator>Boyle, Michael James</creator><creator>Camp, J. Gray</creator><creator>Treutlein, Barbara</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210603</creationdate><title>Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases</title><author>Fleck, Jonas Simon ; Sanchís-Calleja, Fátima ; He, Zhisong ; Santel, Malgorzata ; Boyle, Michael James ; Camp, J. Gray ; Treutlein, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-32b886d14a547044eeca681db6c67cf4e67259b3c861b4f8d8bc1e3cbdf7bcae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>annotation</topic><topic>brain</topic><topic>celltype</topic><topic>deconvolution</topic><topic>development</topic><topic>morphogens</topic><topic>organoids</topic><topic>patterning</topic><topic>scRNA-seq</topic><topic>toolkit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleck, Jonas Simon</creatorcontrib><creatorcontrib>Sanchís-Calleja, Fátima</creatorcontrib><creatorcontrib>He, Zhisong</creatorcontrib><creatorcontrib>Santel, Malgorzata</creatorcontrib><creatorcontrib>Boyle, Michael James</creatorcontrib><creatorcontrib>Camp, J. Gray</creatorcontrib><creatorcontrib>Treutlein, Barbara</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleck, Jonas Simon</au><au>Sanchís-Calleja, Fátima</au><au>He, Zhisong</au><au>Santel, Malgorzata</au><au>Boyle, Michael James</au><au>Camp, J. Gray</au><au>Treutlein, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2021-06-03</date><risdate>2021</risdate><volume>28</volume><issue>6</issue><spage>1148</spage><epage>1159.e8</epage><pages>1148-1159.e8</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Self-organizing tissues resembling brain structures generated from human stem cells offer exciting possibilities to study human brain development, disease, and evolution. These 3D models are complex and can contain cells at various stages of differentiation from different brain regions. Single-cell genomic methods provide powerful approaches to explore cell composition, differentiation trajectories, and genetic perturbations in brain organoid systems. However, it remains a major challenge to understand the heterogeneity observed within and between individual organoids. Here, we develop a set of computational tools (VoxHunt) to assess brain organoid patterning, developmental state, and cell identity through comparisons to spatial and single-cell transcriptome reference datasets. We use VoxHunt to characterize and visualize cell compositions using single-cell and bulk genomic data from multiple organoid protocols modeling different brain structures. VoxHunt will be useful to assess organoid engineering protocols and to annotate cell fates that emerge in organoids during genetic and environmental perturbation experiments. [Display omitted] •Computational toolkit to explore and visualize Allen Brain Atlas data•Annotation of brain organoid single-cell genomic data via reference atlas queries•Bulk transcriptome deconvolution through spatial brain map comparisons•Multiplexed patterning screens to dissect the effect of morphogens Organoid tissues resembling parts of the human brain can be grown from stem cells. Treutlein, Camp, and colleagues develop a computational toolkit to explore the types of cells that are present in brain organoids by comparing gene features of individual organoid cells to primary brain atlases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33711282</pmid><doi>10.1016/j.stem.2021.02.015</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1934-5909
ispartof Cell stem cell, 2021-06, Vol.28 (6), p.1148-1159.e8
issn 1934-5909
1875-9777
language eng
recordid cdi_proquest_miscellaneous_2501266985
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects annotation
brain
celltype
deconvolution
development
morphogens
organoids
patterning
scRNA-seq
toolkit
title Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20organoid%20brain%20region%20identities%20by%20mapping%20single-cell%20genomic%20data%20to%20reference%20atlases&rft.jtitle=Cell%20stem%20cell&rft.au=Fleck,%20Jonas%20Simon&rft.date=2021-06-03&rft.volume=28&rft.issue=6&rft.spage=1148&rft.epage=1159.e8&rft.pages=1148-1159.e8&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2021.02.015&rft_dat=%3Cproquest_cross%3E2501266985%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-32b886d14a547044eeca681db6c67cf4e67259b3c861b4f8d8bc1e3cbdf7bcae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501266985&rft_id=info:pmid/33711282&rfr_iscdi=true