Loading…
Circular economy fertilization: Phycoremediated algal biomass as biofertilizers for sustainable crop production
There is an urgent need to meet the demand of water and nutrients by their reuse and recycling to gratify sustainable food production system and resource conservation. Chlorella minutissima was found to be very effective in the removal of electrical conductivity (EC), total dissolved solids, phospho...
Saved in:
Published in: | Journal of environmental management 2021-06, Vol.287, p.112295-112295, Article 112295 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There is an urgent need to meet the demand of water and nutrients by their reuse and recycling to gratify sustainable food production system and resource conservation. Chlorella minutissima was found to be very effective in the removal of electrical conductivity (EC), total dissolved solids, phosphorous (P), potassium (K), ammonium, nitrate, biological oxygen demand (BOD5) and chemical oxygen demand (COD) of sewage wastewater. We tested the effects of phycoremediated algal biomass addition to soil in field plots of baby corn and spinach, on plant growth, yield and soil chemical properties. The application of 100% nitrogen (N) fertilizer by algal biomass lead to higher economic yield of spinach and baby corn than recommended dose of mineral fertilizers. The available N and P content in experimental plots applied with algae biomass as biofertilizers were significantly higher than other treatments. The soil enzymes, such as urease, nitrate reductase, and dehydrogenase were analysed during the cropping season of baby corn and spinach. The soil supplied with 100% N by algae biomass (C. minutissima) significantly (PÂ |
---|---|
ISSN: | 0301-4797 1095-8630 |
DOI: | 10.1016/j.jenvman.2021.112295 |