Loading…

Antisense microRNA185 loaded liposome for efficient inhibition of the hepatic endogenous microRNA185 level

[Display omitted] MicroRNA185 (miR185), an endogenous noncoding RNA with 23 nucleotides, is one of key posttranscriptional modulators of cholesterol metabolism in hepatic cells. The antisense inhibitor of miR185 (miR185i) could decrease cholesterol level in vivo, providing a promising agent for anti...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmaceutical sciences 2021-06, Vol.161, p.105803-105803, Article 105803
Main Authors: Wang, Dan, Wang, Xuelei, Wang, Li, Zhang, Jin, Ma, Jie, Xia, Guimin, Hong, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] MicroRNA185 (miR185), an endogenous noncoding RNA with 23 nucleotides, is one of key posttranscriptional modulators of cholesterol metabolism in hepatic cells. The antisense inhibitor of miR185 (miR185i) could decrease cholesterol level in vivo, providing a promising agent for anti-atherosclerosis strategy. In this work, a novel LipomiR185i was constructed by thin film hydration method and post-PEGylation as DOPE: DOTAP: Chol: DSPE-PEG2000 at the molar ratio of 1:1:1:0.1 with a nitrogen-to-phosphate ratio of 3, through the optimization of three cationic lipids (DOTAP, DODMA and DLin-MC3-DMA), six helper lipids (PC-98T, HSPC, DOPE, DMPC, DPPC and DSPC), different amounts and incorporation approaches of DSPE-PEG2000 and nitrogen-to-phosphate ratio. LipomiR185i was characterized with a particle size of 174 ± 11 nm, a zeta potential of 7.0 ± 3.3 mV, high encapsulation efficiency and transfection activity. It could protect miR185i from the rapid degradation by nucleases in serum, enhance cellular uptake and promote lysosomal escape in HepG2 cells. LipomiR185i could accumulate in the liver and remain for at least two weeks. More importantly, LipomiR185i significantly down-regulated the hepatic endogenous miR185 level in vitro and in vivo without significant tissue damage at 14 mg⋅kg−1. The construction of LipomiR185i provides a potential anti-atherosclerotic nanodrug as well as a platform for delivering small RNAs to the liver efficiently and safely.
ISSN:0928-0987
1879-0720
DOI:10.1016/j.ejps.2021.105803