Loading…

Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode

The capture of photoexcited deep-band hot carriers, excited by photons with energies far above the bandgap, is of significant importance for photovoltaic and photoelectronic applications because it is directly related to the quantum efficiency of photon-to-electron conversion. By employing time-reso...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2021-03, Vol.12 (11), p.2886-2891
Main Authors: Zhang, Jin, Hong, Hao, Zhang, Jincan, Wu, Chunchun, Peng, Hailin, Liu, Kaihui, Meng, Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a345t-154e7b3afe3bb345428df8980efd64854b3fc01aa94a472412600e7fa68a4fdf3
cites cdi_FETCH-LOGICAL-a345t-154e7b3afe3bb345428df8980efd64854b3fc01aa94a472412600e7fa68a4fdf3
container_end_page 2891
container_issue 11
container_start_page 2886
container_title The journal of physical chemistry letters
container_volume 12
creator Zhang, Jin
Hong, Hao
Zhang, Jincan
Wu, Chunchun
Peng, Hailin
Liu, Kaihui
Meng, Sheng
description The capture of photoexcited deep-band hot carriers, excited by photons with energies far above the bandgap, is of significant importance for photovoltaic and photoelectronic applications because it is directly related to the quantum efficiency of photon-to-electron conversion. By employing time-resolved photoluminescence and state-of-the-art time-domain density functional theory, we reveal that photoexcited hot carriers in organic–inorganic hybrid perovskites prefer a zigzag interfacial charge-transfer pathway, i.e., the hot carriers transfer back and forth between CH3NH3PbI3 and graphene electrode, before they reach a charge-separated state. Driven by quantum coherence and interlayer vibrational modes, this pathway at the semiconductor–graphene interface takes about 400 fs, much faster than the relaxation process within CH3NH3PbI3 (several picoseconds). Our work provides new insight into the fundamental understanding and precise manipulation of hot carrier dynamics at the complex interfaces, paving the way for highly efficient photovoltaic and photoelectric device optimization.
doi_str_mv 10.1021/acs.jpclett.1c00347
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2501851849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501851849</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-154e7b3afe3bb345428df8980efd64854b3fc01aa94a472412600e7fa68a4fdf3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EoqXwC5CQR5a0duwkzoii0iJVKgNdWKxLYrep0jjYKaj8elwaEBPTnU7v3d37ELqlZExJSCdQuPG2LWrVdWNaEMJ4coaGNOUiSKiIzv_0A3Tl3JaQOCUiuUQDxpKQe8MQLVeNhXdV11WzxoBfq_UnrPEzdJsPOGBtLJ6bDmdgbaUszkxdq6KrTIM_qm6DZxbajWoUnh7H1pTqGl1oqJ266esIrR6nL9k8WCxnT9nDIgDGoy6gEVdJzkArlud-wkNRapEKonQZcxHxnOmCUICUA_e_0jAmRCUaYgFcl5qN0P1pb2vN2165Tu4qV_gc0CizdzKMiM9NBU-9lJ2khTXOWaVla6sd2IOkRB5JSk9S9iRlT9K77voD-3ynyl_PDzovmJwE326zt43P--_KL0yigkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501851849</pqid></control><display><type>article</type><title>Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Jin ; Hong, Hao ; Zhang, Jincan ; Wu, Chunchun ; Peng, Hailin ; Liu, Kaihui ; Meng, Sheng</creator><creatorcontrib>Zhang, Jin ; Hong, Hao ; Zhang, Jincan ; Wu, Chunchun ; Peng, Hailin ; Liu, Kaihui ; Meng, Sheng</creatorcontrib><description>The capture of photoexcited deep-band hot carriers, excited by photons with energies far above the bandgap, is of significant importance for photovoltaic and photoelectronic applications because it is directly related to the quantum efficiency of photon-to-electron conversion. By employing time-resolved photoluminescence and state-of-the-art time-domain density functional theory, we reveal that photoexcited hot carriers in organic–inorganic hybrid perovskites prefer a zigzag interfacial charge-transfer pathway, i.e., the hot carriers transfer back and forth between CH3NH3PbI3 and graphene electrode, before they reach a charge-separated state. Driven by quantum coherence and interlayer vibrational modes, this pathway at the semiconductor–graphene interface takes about 400 fs, much faster than the relaxation process within CH3NH3PbI3 (several picoseconds). Our work provides new insight into the fundamental understanding and precise manipulation of hot carrier dynamics at the complex interfaces, paving the way for highly efficient photovoltaic and photoelectric device optimization.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.1c00347</identifier><identifier>PMID: 33724034</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Energy Science</subject><ispartof>The journal of physical chemistry letters, 2021-03, Vol.12 (11), p.2886-2891</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-154e7b3afe3bb345428df8980efd64854b3fc01aa94a472412600e7fa68a4fdf3</citedby><cites>FETCH-LOGICAL-a345t-154e7b3afe3bb345428df8980efd64854b3fc01aa94a472412600e7fa68a4fdf3</cites><orcidid>0000-0001-7830-3464 ; 0000-0002-8781-2495 ; 0000-0002-1553-1432 ; 0000-0003-1569-0238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33724034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Hong, Hao</creatorcontrib><creatorcontrib>Zhang, Jincan</creatorcontrib><creatorcontrib>Wu, Chunchun</creatorcontrib><creatorcontrib>Peng, Hailin</creatorcontrib><creatorcontrib>Liu, Kaihui</creatorcontrib><creatorcontrib>Meng, Sheng</creatorcontrib><title>Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>The capture of photoexcited deep-band hot carriers, excited by photons with energies far above the bandgap, is of significant importance for photovoltaic and photoelectronic applications because it is directly related to the quantum efficiency of photon-to-electron conversion. By employing time-resolved photoluminescence and state-of-the-art time-domain density functional theory, we reveal that photoexcited hot carriers in organic–inorganic hybrid perovskites prefer a zigzag interfacial charge-transfer pathway, i.e., the hot carriers transfer back and forth between CH3NH3PbI3 and graphene electrode, before they reach a charge-separated state. Driven by quantum coherence and interlayer vibrational modes, this pathway at the semiconductor–graphene interface takes about 400 fs, much faster than the relaxation process within CH3NH3PbI3 (several picoseconds). Our work provides new insight into the fundamental understanding and precise manipulation of hot carrier dynamics at the complex interfaces, paving the way for highly efficient photovoltaic and photoelectric device optimization.</description><subject>Physical Insights into Energy Science</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EoqXwC5CQR5a0duwkzoii0iJVKgNdWKxLYrep0jjYKaj8elwaEBPTnU7v3d37ELqlZExJSCdQuPG2LWrVdWNaEMJ4coaGNOUiSKiIzv_0A3Tl3JaQOCUiuUQDxpKQe8MQLVeNhXdV11WzxoBfq_UnrPEzdJsPOGBtLJ6bDmdgbaUszkxdq6KrTIM_qm6DZxbajWoUnh7H1pTqGl1oqJ266esIrR6nL9k8WCxnT9nDIgDGoy6gEVdJzkArlud-wkNRapEKonQZcxHxnOmCUICUA_e_0jAmRCUaYgFcl5qN0P1pb2vN2165Tu4qV_gc0CizdzKMiM9NBU-9lJ2khTXOWaVla6sd2IOkRB5JSk9S9iRlT9K77voD-3ynyl_PDzovmJwE326zt43P--_KL0yigkU</recordid><startdate>20210325</startdate><enddate>20210325</enddate><creator>Zhang, Jin</creator><creator>Hong, Hao</creator><creator>Zhang, Jincan</creator><creator>Wu, Chunchun</creator><creator>Peng, Hailin</creator><creator>Liu, Kaihui</creator><creator>Meng, Sheng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7830-3464</orcidid><orcidid>https://orcid.org/0000-0002-8781-2495</orcidid><orcidid>https://orcid.org/0000-0002-1553-1432</orcidid><orcidid>https://orcid.org/0000-0003-1569-0238</orcidid></search><sort><creationdate>20210325</creationdate><title>Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode</title><author>Zhang, Jin ; Hong, Hao ; Zhang, Jincan ; Wu, Chunchun ; Peng, Hailin ; Liu, Kaihui ; Meng, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-154e7b3afe3bb345428df8980efd64854b3fc01aa94a472412600e7fa68a4fdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physical Insights into Energy Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Hong, Hao</creatorcontrib><creatorcontrib>Zhang, Jincan</creatorcontrib><creatorcontrib>Wu, Chunchun</creatorcontrib><creatorcontrib>Peng, Hailin</creatorcontrib><creatorcontrib>Liu, Kaihui</creatorcontrib><creatorcontrib>Meng, Sheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jin</au><au>Hong, Hao</au><au>Zhang, Jincan</au><au>Wu, Chunchun</au><au>Peng, Hailin</au><au>Liu, Kaihui</au><au>Meng, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2021-03-25</date><risdate>2021</risdate><volume>12</volume><issue>11</issue><spage>2886</spage><epage>2891</epage><pages>2886-2891</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The capture of photoexcited deep-band hot carriers, excited by photons with energies far above the bandgap, is of significant importance for photovoltaic and photoelectronic applications because it is directly related to the quantum efficiency of photon-to-electron conversion. By employing time-resolved photoluminescence and state-of-the-art time-domain density functional theory, we reveal that photoexcited hot carriers in organic–inorganic hybrid perovskites prefer a zigzag interfacial charge-transfer pathway, i.e., the hot carriers transfer back and forth between CH3NH3PbI3 and graphene electrode, before they reach a charge-separated state. Driven by quantum coherence and interlayer vibrational modes, this pathway at the semiconductor–graphene interface takes about 400 fs, much faster than the relaxation process within CH3NH3PbI3 (several picoseconds). Our work provides new insight into the fundamental understanding and precise manipulation of hot carrier dynamics at the complex interfaces, paving the way for highly efficient photovoltaic and photoelectric device optimization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33724034</pmid><doi>10.1021/acs.jpclett.1c00347</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7830-3464</orcidid><orcidid>https://orcid.org/0000-0002-8781-2495</orcidid><orcidid>https://orcid.org/0000-0002-1553-1432</orcidid><orcidid>https://orcid.org/0000-0003-1569-0238</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2021-03, Vol.12 (11), p.2886-2891
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2501851849
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Physical Insights into Energy Science
title Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20a%20Zigzag%20Pathway%20for%20Hot%20Carrier%20Collection%20with%20Graphene%20Electrode&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Zhang,%20Jin&rft.date=2021-03-25&rft.volume=12&rft.issue=11&rft.spage=2886&rft.epage=2891&rft.pages=2886-2891&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.1c00347&rft_dat=%3Cproquest_cross%3E2501851849%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a345t-154e7b3afe3bb345428df8980efd64854b3fc01aa94a472412600e7fa68a4fdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501851849&rft_id=info:pmid/33724034&rfr_iscdi=true