Loading…
Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode
The capture of photoexcited deep-band hot carriers, excited by photons with energies far above the bandgap, is of significant importance for photovoltaic and photoelectronic applications because it is directly related to the quantum efficiency of photon-to-electron conversion. By employing time-reso...
Saved in:
Published in: | The journal of physical chemistry letters 2021-03, Vol.12 (11), p.2886-2891 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a345t-154e7b3afe3bb345428df8980efd64854b3fc01aa94a472412600e7fa68a4fdf3 |
---|---|
cites | cdi_FETCH-LOGICAL-a345t-154e7b3afe3bb345428df8980efd64854b3fc01aa94a472412600e7fa68a4fdf3 |
container_end_page | 2891 |
container_issue | 11 |
container_start_page | 2886 |
container_title | The journal of physical chemistry letters |
container_volume | 12 |
creator | Zhang, Jin Hong, Hao Zhang, Jincan Wu, Chunchun Peng, Hailin Liu, Kaihui Meng, Sheng |
description | The capture of photoexcited deep-band hot carriers, excited by photons with energies far above the bandgap, is of significant importance for photovoltaic and photoelectronic applications because it is directly related to the quantum efficiency of photon-to-electron conversion. By employing time-resolved photoluminescence and state-of-the-art time-domain density functional theory, we reveal that photoexcited hot carriers in organic–inorganic hybrid perovskites prefer a zigzag interfacial charge-transfer pathway, i.e., the hot carriers transfer back and forth between CH3NH3PbI3 and graphene electrode, before they reach a charge-separated state. Driven by quantum coherence and interlayer vibrational modes, this pathway at the semiconductor–graphene interface takes about 400 fs, much faster than the relaxation process within CH3NH3PbI3 (several picoseconds). Our work provides new insight into the fundamental understanding and precise manipulation of hot carrier dynamics at the complex interfaces, paving the way for highly efficient photovoltaic and photoelectric device optimization. |
doi_str_mv | 10.1021/acs.jpclett.1c00347 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2501851849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501851849</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-154e7b3afe3bb345428df8980efd64854b3fc01aa94a472412600e7fa68a4fdf3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EoqXwC5CQR5a0duwkzoii0iJVKgNdWKxLYrep0jjYKaj8elwaEBPTnU7v3d37ELqlZExJSCdQuPG2LWrVdWNaEMJ4coaGNOUiSKiIzv_0A3Tl3JaQOCUiuUQDxpKQe8MQLVeNhXdV11WzxoBfq_UnrPEzdJsPOGBtLJ6bDmdgbaUszkxdq6KrTIM_qm6DZxbajWoUnh7H1pTqGl1oqJ266esIrR6nL9k8WCxnT9nDIgDGoy6gEVdJzkArlud-wkNRapEKonQZcxHxnOmCUICUA_e_0jAmRCUaYgFcl5qN0P1pb2vN2165Tu4qV_gc0CizdzKMiM9NBU-9lJ2khTXOWaVla6sd2IOkRB5JSk9S9iRlT9K77voD-3ynyl_PDzovmJwE326zt43P--_KL0yigkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501851849</pqid></control><display><type>article</type><title>Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Jin ; Hong, Hao ; Zhang, Jincan ; Wu, Chunchun ; Peng, Hailin ; Liu, Kaihui ; Meng, Sheng</creator><creatorcontrib>Zhang, Jin ; Hong, Hao ; Zhang, Jincan ; Wu, Chunchun ; Peng, Hailin ; Liu, Kaihui ; Meng, Sheng</creatorcontrib><description>The capture of photoexcited deep-band hot carriers, excited by photons with energies far above the bandgap, is of significant importance for photovoltaic and photoelectronic applications because it is directly related to the quantum efficiency of photon-to-electron conversion. By employing time-resolved photoluminescence and state-of-the-art time-domain density functional theory, we reveal that photoexcited hot carriers in organic–inorganic hybrid perovskites prefer a zigzag interfacial charge-transfer pathway, i.e., the hot carriers transfer back and forth between CH3NH3PbI3 and graphene electrode, before they reach a charge-separated state. Driven by quantum coherence and interlayer vibrational modes, this pathway at the semiconductor–graphene interface takes about 400 fs, much faster than the relaxation process within CH3NH3PbI3 (several picoseconds). Our work provides new insight into the fundamental understanding and precise manipulation of hot carrier dynamics at the complex interfaces, paving the way for highly efficient photovoltaic and photoelectric device optimization.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.1c00347</identifier><identifier>PMID: 33724034</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Energy Science</subject><ispartof>The journal of physical chemistry letters, 2021-03, Vol.12 (11), p.2886-2891</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-154e7b3afe3bb345428df8980efd64854b3fc01aa94a472412600e7fa68a4fdf3</citedby><cites>FETCH-LOGICAL-a345t-154e7b3afe3bb345428df8980efd64854b3fc01aa94a472412600e7fa68a4fdf3</cites><orcidid>0000-0001-7830-3464 ; 0000-0002-8781-2495 ; 0000-0002-1553-1432 ; 0000-0003-1569-0238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33724034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Hong, Hao</creatorcontrib><creatorcontrib>Zhang, Jincan</creatorcontrib><creatorcontrib>Wu, Chunchun</creatorcontrib><creatorcontrib>Peng, Hailin</creatorcontrib><creatorcontrib>Liu, Kaihui</creatorcontrib><creatorcontrib>Meng, Sheng</creatorcontrib><title>Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>The capture of photoexcited deep-band hot carriers, excited by photons with energies far above the bandgap, is of significant importance for photovoltaic and photoelectronic applications because it is directly related to the quantum efficiency of photon-to-electron conversion. By employing time-resolved photoluminescence and state-of-the-art time-domain density functional theory, we reveal that photoexcited hot carriers in organic–inorganic hybrid perovskites prefer a zigzag interfacial charge-transfer pathway, i.e., the hot carriers transfer back and forth between CH3NH3PbI3 and graphene electrode, before they reach a charge-separated state. Driven by quantum coherence and interlayer vibrational modes, this pathway at the semiconductor–graphene interface takes about 400 fs, much faster than the relaxation process within CH3NH3PbI3 (several picoseconds). Our work provides new insight into the fundamental understanding and precise manipulation of hot carrier dynamics at the complex interfaces, paving the way for highly efficient photovoltaic and photoelectric device optimization.</description><subject>Physical Insights into Energy Science</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EoqXwC5CQR5a0duwkzoii0iJVKgNdWKxLYrep0jjYKaj8elwaEBPTnU7v3d37ELqlZExJSCdQuPG2LWrVdWNaEMJ4coaGNOUiSKiIzv_0A3Tl3JaQOCUiuUQDxpKQe8MQLVeNhXdV11WzxoBfq_UnrPEzdJsPOGBtLJ6bDmdgbaUszkxdq6KrTIM_qm6DZxbajWoUnh7H1pTqGl1oqJ266esIrR6nL9k8WCxnT9nDIgDGoy6gEVdJzkArlud-wkNRapEKonQZcxHxnOmCUICUA_e_0jAmRCUaYgFcl5qN0P1pb2vN2165Tu4qV_gc0CizdzKMiM9NBU-9lJ2khTXOWaVla6sd2IOkRB5JSk9S9iRlT9K77voD-3ynyl_PDzovmJwE326zt43P--_KL0yigkU</recordid><startdate>20210325</startdate><enddate>20210325</enddate><creator>Zhang, Jin</creator><creator>Hong, Hao</creator><creator>Zhang, Jincan</creator><creator>Wu, Chunchun</creator><creator>Peng, Hailin</creator><creator>Liu, Kaihui</creator><creator>Meng, Sheng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7830-3464</orcidid><orcidid>https://orcid.org/0000-0002-8781-2495</orcidid><orcidid>https://orcid.org/0000-0002-1553-1432</orcidid><orcidid>https://orcid.org/0000-0003-1569-0238</orcidid></search><sort><creationdate>20210325</creationdate><title>Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode</title><author>Zhang, Jin ; Hong, Hao ; Zhang, Jincan ; Wu, Chunchun ; Peng, Hailin ; Liu, Kaihui ; Meng, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-154e7b3afe3bb345428df8980efd64854b3fc01aa94a472412600e7fa68a4fdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physical Insights into Energy Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Hong, Hao</creatorcontrib><creatorcontrib>Zhang, Jincan</creatorcontrib><creatorcontrib>Wu, Chunchun</creatorcontrib><creatorcontrib>Peng, Hailin</creatorcontrib><creatorcontrib>Liu, Kaihui</creatorcontrib><creatorcontrib>Meng, Sheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jin</au><au>Hong, Hao</au><au>Zhang, Jincan</au><au>Wu, Chunchun</au><au>Peng, Hailin</au><au>Liu, Kaihui</au><au>Meng, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2021-03-25</date><risdate>2021</risdate><volume>12</volume><issue>11</issue><spage>2886</spage><epage>2891</epage><pages>2886-2891</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The capture of photoexcited deep-band hot carriers, excited by photons with energies far above the bandgap, is of significant importance for photovoltaic and photoelectronic applications because it is directly related to the quantum efficiency of photon-to-electron conversion. By employing time-resolved photoluminescence and state-of-the-art time-domain density functional theory, we reveal that photoexcited hot carriers in organic–inorganic hybrid perovskites prefer a zigzag interfacial charge-transfer pathway, i.e., the hot carriers transfer back and forth between CH3NH3PbI3 and graphene electrode, before they reach a charge-separated state. Driven by quantum coherence and interlayer vibrational modes, this pathway at the semiconductor–graphene interface takes about 400 fs, much faster than the relaxation process within CH3NH3PbI3 (several picoseconds). Our work provides new insight into the fundamental understanding and precise manipulation of hot carrier dynamics at the complex interfaces, paving the way for highly efficient photovoltaic and photoelectric device optimization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33724034</pmid><doi>10.1021/acs.jpclett.1c00347</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7830-3464</orcidid><orcidid>https://orcid.org/0000-0002-8781-2495</orcidid><orcidid>https://orcid.org/0000-0002-1553-1432</orcidid><orcidid>https://orcid.org/0000-0003-1569-0238</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2021-03, Vol.12 (11), p.2886-2891 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_2501851849 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Physical Insights into Energy Science |
title | Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20a%20Zigzag%20Pathway%20for%20Hot%20Carrier%20Collection%20with%20Graphene%20Electrode&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Zhang,%20Jin&rft.date=2021-03-25&rft.volume=12&rft.issue=11&rft.spage=2886&rft.epage=2891&rft.pages=2886-2891&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.1c00347&rft_dat=%3Cproquest_cross%3E2501851849%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a345t-154e7b3afe3bb345428df8980efd64854b3fc01aa94a472412600e7fa68a4fdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2501851849&rft_id=info:pmid/33724034&rfr_iscdi=true |