Loading…
Scalable nanophotonic neural probes for multicolor and on-demand light delivery in brain tissue
Neural probes are brain-invasive devices that record and manipulate neural circuits using electricity, light, or drugs. The capability to shine distinct wavelengths and control their respective output locations for activation or deactivation of specific groups of neurons is desirable but remains una...
Saved in:
Published in: | Nanotechnology 2021-06, Vol.32 (26), p.265201 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neural probes are
brain-invasive devices that record and manipulate neural circuits using electricity, light, or drugs. The capability to shine distinct wavelengths and control their respective output locations for activation or deactivation of specific groups of neurons is desirable but remains unachieved. Here, we discuss our probe's capability to deliver two independently controllable wavelengths (450 and 655 nm) in the location(s) of interest using nanophotonic directional couplers and ring resonators. These nanophotonics are scalable to dozens of outputs without significantly increasing the device's lateral dimensions. Furthermore, they are entirely passive and thus do not require electrical input that results in heat generation. Besides, we integrate a high number of electrodes for a simultaneous neural activity readout. Thus, we overcome the challenges associated with multicolor illumination for neural devices by exploiting the capability of miniaturizable, passive probes to deliver two different frequencies in several areas of interest. These devices open the path towards investigating the
electrical signal propagation under the individual or simultaneous activation or inhibition of distinct brain regions. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/abef2a |