Loading…
Dispersion cancellation in a quantum interferometer with independent single photons
A key technique to perform proper quantum information processing is to get a high visibility quantum interference between independent single photons. One of the crucial elements that affects the quantum interference is a group velocity dispersion that occurs when single photons pass through a disper...
Saved in:
Published in: | Optics express 2021-01, Vol.29 (2), p.2348-2363 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A key technique to perform proper quantum information processing is to get a high visibility quantum interference between independent single photons. One of the crucial elements that affects the quantum interference is a group velocity dispersion that occurs when single photons pass through a dispersive medium. We theoretically and experimentally demonstrate that an effect of group velocity dispersion on the two-photon interference can be cancelled if two independent single photons experience the same amount of pulse broadening. This dispersion cancellation effect can be applied to a multi-path linear interferometer with multiple independent single photons. As multi-path quantum interferometers are at the heart of quantum communication, photonic quantum computing, and boson sampling applications, our work should find wide applicability in quantum information science. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.415610 |