Loading…
Feasible time-bin entanglement purification based on sum-frequency generation
High quality time-bin entanglement is widely exploited to achieve the purposes of fundamental tests of physics and the implementation of quantum communication protocols both in free space and optical fiber propagation. However, the imperfect approaches of generating time-bin entangled state will deg...
Saved in:
Published in: | Optics express 2021-01, Vol.29 (2), p.571-583 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High quality time-bin entanglement is widely exploited to achieve the purposes of fundamental tests of physics and the implementation of quantum communication protocols both in free space and optical fiber propagation. However, the imperfect approaches of generating time-bin entangled state will degrade its quality and limit its practical application. Entanglement purification is to distill high quality entangled states from low quality entangled states. In this paper, we present the first entanglement purification protocol (EPP) for time-bin entanglement. We first explain this EPP for two-photon time-bin entangled state and then extend it to the system of multi-photon time-bin entangled state. We also design a possible realization of this EPP with practical spontaneous parametric down conversion (SPDC) source. Differ from the conventional EPPs, this EPP does not require the sophisticated controlled-not (CNOT) gate or similar operations, and it uses the feasible sum-frequency generation (SFG) to perform the purification. Moreover, the double-pair noise emitted from the SPDC source can be eliminated automatically which is the other advantage of this EPP. If we combine with the faithful entanglement swapping, this EPP may have potential to be a part of full quantum repeaters. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.409931 |