Loading…
Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils
Biochar application has been a promising approach to improve soil quality but their optimal amount in improving physical and hydraulic properties remains contradictory and inconclusive. The objective of this study was to examine and propose an optimal biochar application amount in saline alkali soil...
Saved in:
Published in: | The Science of the total environment 2021-06, Vol.771, p.144802-144802, Article 144802 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biochar application has been a promising approach to improve soil quality but their optimal amount in improving physical and hydraulic properties remains contradictory and inconclusive. The objective of this study was to examine and propose an optimal biochar application amount in saline alkali soil considering their impact on soil physical and hydraulic properties. A three-year field experiment was conducted in the saline-alkali soils under plastic film-mulched drip irrigation in Xinjiang, China. The studied physical and hydraulic properties included bulk density, soil porosity, saturated soil water content (θs), permanent wilting point (PWP), field capacity (FC), plant available water (PAW), spatial distribution of soil water content, planar soil water storage (PSWS), and soil evaporation. The treatments included biochar application amounts of 0 (CK), 10 (B10), 50 (B50), and 100 t ha−1 (B100) in 2018. Additional two treatments with 25 t ha−1 (B25) and 30 t ha−1 (B30) were added in 2019 and 2020, respectively. A four-parameter Gaussian function was fitted to the single-peak curves of the studied hydraulic properties vs. biochar application amounts to determine the most optimal biochar application amount. The results indicated that: (1) All of the biochar treatments significantly decreased bulk density and increased soil porosity over CK; (2) B10 and B25 treatments significantly increased θs, FC, PAW, PWP, and PSWS of root zones in the film-mulched zones over CK, but reverse results were observed in the B50 and B100 treatments; (3) Daily and cumulative soil evaporation were increased in no mulch zones of all biochar treatments over CK; (4) A dose of 21.9 t ha−1 was recommended as the most optimal biochar application amount for improving physical and hydraulic properties of saline-alkali soil. This research provided useful information on biochar application amounts for improving physical and hydraulic properties in saline-alkali soil.
[Display omitted]
•Biochar decreased bulk density and increased soil porosity of saline-alkali soil.•Biochar increased field capacity and plant available water of saline-alkali soil.•Excessive biochar had negative impact on hydraulic properties of the saline soil.•21.9 t ha−1 was recommended as an appropriate biochar application strategy. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2020.144802 |