Loading…
Stabilizing SSR oscillations with a shunt reactor controller for uncertain levels of series compensation
The authors demonstrate how frequency-domain techniques based on I. Horowitz et al.'s (1986) quantitative feedback theory can be applied to the design of fixed-parameter controllers in power systems where the plant parameters have large uncertainties. They present the design of a controller for...
Saved in:
Published in: | IEEE transactions on power systems 1988-08, Vol.3 (3), p.936-943 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The authors demonstrate how frequency-domain techniques based on I. Horowitz et al.'s (1986) quantitative feedback theory can be applied to the design of fixed-parameter controllers in power systems where the plant parameters have large uncertainties. They present the design of a controller for a shunt reactor to eliminate torsional shaft oscillations in a turbogenerator susceptible to subsynchronous resonance (SSR). The considered parameter uncertainty is the series capacitor compensation level, which has been assumed to vary between 12% and 76%. Simulated transients results of the uncontrolled/controlled system are depicted.< > |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/59.14544 |