Loading…
Robust Data Worth Analysis with Surrogate Models
Highly detailed physically based groundwater models are often applied to make predictions of system states under unknown forcing. The required analysis of uncertainty is often unfeasible due to the high computational demand. We combine two possible solution strategies: (1) the use of faster surrogat...
Saved in:
Published in: | Ground water 2021-09, Vol.59 (5), p.728-744 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a4168-96a23bcddf708791e7837bd1c97fdde10e16d64634172bfe3c00430b80e0412f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a4168-96a23bcddf708791e7837bd1c97fdde10e16d64634172bfe3c00430b80e0412f3 |
container_end_page | 744 |
container_issue | 5 |
container_start_page | 728 |
container_title | Ground water |
container_volume | 59 |
creator | Gosses, Moritz Wöhling, Thomas |
description | Highly detailed physically based groundwater models are often applied to make predictions of system states under unknown forcing. The required analysis of uncertainty is often unfeasible due to the high computational demand. We combine two possible solution strategies: (1) the use of faster surrogate models; and (2) a robust data worth analysis combining quick first‐order second‐moment uncertainty quantification with null‐space Monte Carlo techniques to account for parametric uncertainty. A structurally and parametrically simplified model and a proper orthogonal decomposition (POD) surrogate are investigated. Data worth estimations by both surrogates are compared against estimates by a complex MODFLOW benchmark model of an aquifer in New Zealand. Data worth is defined as the change in post‐calibration predictive uncertainty of groundwater head, river‐groundwater exchange flux, and drain flux data, compared to the calibrated model. It incorporates existing observations, potential new measurements of system states (“additional” data) as well as knowledge of model parameters (“parametric” data). The data worth analysis is extended to account for non‐uniqueness of model parameters by null‐space Monte Carlo sampling. Data worth estimates of the surrogates and the benchmark suggest good agreement for both surrogates in estimating worth of existing data. The structural simplification surrogate only partially reproduces the worth of “additional” data and is unable to estimate “parametric” data, while the POD model is in agreement with the complex benchmark for both “additional” and “parametric” data. The variance of the POD data worth estimates suggests the need to account for parameter non‐uniqueness, like presented here, for robust results. |
doi_str_mv | 10.1111/gwat.13098 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2505360807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571925327</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4168-96a23bcddf708791e7837bd1c97fdde10e16d64634172bfe3c00430b80e0412f3</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgipvTix9ACl5E6Hxp0iQ9jqlTmAg6mbeQNuns6JaZtIx9e1s7PXjwXR4Pfvzh_RE6xzDEzdwstqoaYgKJOEB9zGkcsljQQ9QHwDykjL_30In3SwAgCSTHqEcIZ0Qw3kfwYtPaV8GtqlQwt676CEZrVe584YNt0VyvtXN2oSoTPFltSn-KjnJVenO23wP0dn83Gz-E0-fJ43g0DRXFTIQJUxFJM61zDoIn2HBBeKpxlvBca4PBYKYZZYRiHqW5IRkAJZAKMEBxlJMBuupyN85-1sZXclX4zJSlWhtbexnFEBMGAnhDL__Qpa1d80WrOE6imEStuu5U5qz3zuRy44qVcjuJQbY9yrZH-d1jgy_2kXW6MvqX_hTXANyBbVGa3T9RcjIfzbrQL3Mxex4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571925327</pqid></control><display><type>article</type><title>Robust Data Worth Analysis with Surrogate Models</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Gosses, Moritz ; Wöhling, Thomas</creator><creatorcontrib>Gosses, Moritz ; Wöhling, Thomas</creatorcontrib><description>Highly detailed physically based groundwater models are often applied to make predictions of system states under unknown forcing. The required analysis of uncertainty is often unfeasible due to the high computational demand. We combine two possible solution strategies: (1) the use of faster surrogate models; and (2) a robust data worth analysis combining quick first‐order second‐moment uncertainty quantification with null‐space Monte Carlo techniques to account for parametric uncertainty. A structurally and parametrically simplified model and a proper orthogonal decomposition (POD) surrogate are investigated. Data worth estimations by both surrogates are compared against estimates by a complex MODFLOW benchmark model of an aquifer in New Zealand. Data worth is defined as the change in post‐calibration predictive uncertainty of groundwater head, river‐groundwater exchange flux, and drain flux data, compared to the calibrated model. It incorporates existing observations, potential new measurements of system states (“additional” data) as well as knowledge of model parameters (“parametric” data). The data worth analysis is extended to account for non‐uniqueness of model parameters by null‐space Monte Carlo sampling. Data worth estimates of the surrogates and the benchmark suggest good agreement for both surrogates in estimating worth of existing data. The structural simplification surrogate only partially reproduces the worth of “additional” data and is unable to estimate “parametric” data, while the POD model is in agreement with the complex benchmark for both “additional” and “parametric” data. The variance of the POD data worth estimates suggests the need to account for parameter non‐uniqueness, like presented here, for robust results.</description><identifier>ISSN: 0017-467X</identifier><identifier>EISSN: 1745-6584</identifier><identifier>DOI: 10.1111/gwat.13098</identifier><identifier>PMID: 33763867</identifier><language>eng</language><publisher>Malden, US: Blackwell Publishing Ltd</publisher><subject>Aquifers ; Benchmarks ; Calibration ; Computer applications ; Data ; Data analysis ; Estimates ; Groundwater ; Mathematical models ; Parameters ; Proper Orthogonal Decomposition ; Robustness ; Statistical methods ; Uncertainty ; Uniqueness</subject><ispartof>Ground water, 2021-09, Vol.59 (5), p.728-744</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of National Ground Water Association.</rights><rights>2021 The Authors. Groundwater published by Wiley Periodicals LLC on behalf of National Ground Water Association.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4168-96a23bcddf708791e7837bd1c97fdde10e16d64634172bfe3c00430b80e0412f3</citedby><cites>FETCH-LOGICAL-a4168-96a23bcddf708791e7837bd1c97fdde10e16d64634172bfe3c00430b80e0412f3</cites><orcidid>0000-0003-2963-0965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33763867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gosses, Moritz</creatorcontrib><creatorcontrib>Wöhling, Thomas</creatorcontrib><title>Robust Data Worth Analysis with Surrogate Models</title><title>Ground water</title><addtitle>Ground Water</addtitle><description>Highly detailed physically based groundwater models are often applied to make predictions of system states under unknown forcing. The required analysis of uncertainty is often unfeasible due to the high computational demand. We combine two possible solution strategies: (1) the use of faster surrogate models; and (2) a robust data worth analysis combining quick first‐order second‐moment uncertainty quantification with null‐space Monte Carlo techniques to account for parametric uncertainty. A structurally and parametrically simplified model and a proper orthogonal decomposition (POD) surrogate are investigated. Data worth estimations by both surrogates are compared against estimates by a complex MODFLOW benchmark model of an aquifer in New Zealand. Data worth is defined as the change in post‐calibration predictive uncertainty of groundwater head, river‐groundwater exchange flux, and drain flux data, compared to the calibrated model. It incorporates existing observations, potential new measurements of system states (“additional” data) as well as knowledge of model parameters (“parametric” data). The data worth analysis is extended to account for non‐uniqueness of model parameters by null‐space Monte Carlo sampling. Data worth estimates of the surrogates and the benchmark suggest good agreement for both surrogates in estimating worth of existing data. The structural simplification surrogate only partially reproduces the worth of “additional” data and is unable to estimate “parametric” data, while the POD model is in agreement with the complex benchmark for both “additional” and “parametric” data. The variance of the POD data worth estimates suggests the need to account for parameter non‐uniqueness, like presented here, for robust results.</description><subject>Aquifers</subject><subject>Benchmarks</subject><subject>Calibration</subject><subject>Computer applications</subject><subject>Data</subject><subject>Data analysis</subject><subject>Estimates</subject><subject>Groundwater</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Proper Orthogonal Decomposition</subject><subject>Robustness</subject><subject>Statistical methods</subject><subject>Uncertainty</subject><subject>Uniqueness</subject><issn>0017-467X</issn><issn>1745-6584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90EFLwzAUB_AgipvTix9ACl5E6Hxp0iQ9jqlTmAg6mbeQNuns6JaZtIx9e1s7PXjwXR4Pfvzh_RE6xzDEzdwstqoaYgKJOEB9zGkcsljQQ9QHwDykjL_30In3SwAgCSTHqEcIZ0Qw3kfwYtPaV8GtqlQwt676CEZrVe584YNt0VyvtXN2oSoTPFltSn-KjnJVenO23wP0dn83Gz-E0-fJ43g0DRXFTIQJUxFJM61zDoIn2HBBeKpxlvBca4PBYKYZZYRiHqW5IRkAJZAKMEBxlJMBuupyN85-1sZXclX4zJSlWhtbexnFEBMGAnhDL__Qpa1d80WrOE6imEStuu5U5qz3zuRy44qVcjuJQbY9yrZH-d1jgy_2kXW6MvqX_hTXANyBbVGa3T9RcjIfzbrQL3Mxex4</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Gosses, Moritz</creator><creator>Wöhling, Thomas</creator><general>Blackwell Publishing Ltd</general><general>Ground Water Publishing Company</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2963-0965</orcidid></search><sort><creationdate>202109</creationdate><title>Robust Data Worth Analysis with Surrogate Models</title><author>Gosses, Moritz ; Wöhling, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4168-96a23bcddf708791e7837bd1c97fdde10e16d64634172bfe3c00430b80e0412f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aquifers</topic><topic>Benchmarks</topic><topic>Calibration</topic><topic>Computer applications</topic><topic>Data</topic><topic>Data analysis</topic><topic>Estimates</topic><topic>Groundwater</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Proper Orthogonal Decomposition</topic><topic>Robustness</topic><topic>Statistical methods</topic><topic>Uncertainty</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gosses, Moritz</creatorcontrib><creatorcontrib>Wöhling, Thomas</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Free Archive</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ground water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gosses, Moritz</au><au>Wöhling, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Data Worth Analysis with Surrogate Models</atitle><jtitle>Ground water</jtitle><addtitle>Ground Water</addtitle><date>2021-09</date><risdate>2021</risdate><volume>59</volume><issue>5</issue><spage>728</spage><epage>744</epage><pages>728-744</pages><issn>0017-467X</issn><eissn>1745-6584</eissn><abstract>Highly detailed physically based groundwater models are often applied to make predictions of system states under unknown forcing. The required analysis of uncertainty is often unfeasible due to the high computational demand. We combine two possible solution strategies: (1) the use of faster surrogate models; and (2) a robust data worth analysis combining quick first‐order second‐moment uncertainty quantification with null‐space Monte Carlo techniques to account for parametric uncertainty. A structurally and parametrically simplified model and a proper orthogonal decomposition (POD) surrogate are investigated. Data worth estimations by both surrogates are compared against estimates by a complex MODFLOW benchmark model of an aquifer in New Zealand. Data worth is defined as the change in post‐calibration predictive uncertainty of groundwater head, river‐groundwater exchange flux, and drain flux data, compared to the calibrated model. It incorporates existing observations, potential new measurements of system states (“additional” data) as well as knowledge of model parameters (“parametric” data). The data worth analysis is extended to account for non‐uniqueness of model parameters by null‐space Monte Carlo sampling. Data worth estimates of the surrogates and the benchmark suggest good agreement for both surrogates in estimating worth of existing data. The structural simplification surrogate only partially reproduces the worth of “additional” data and is unable to estimate “parametric” data, while the POD model is in agreement with the complex benchmark for both “additional” and “parametric” data. The variance of the POD data worth estimates suggests the need to account for parameter non‐uniqueness, like presented here, for robust results.</abstract><cop>Malden, US</cop><pub>Blackwell Publishing Ltd</pub><pmid>33763867</pmid><doi>10.1111/gwat.13098</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2963-0965</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-467X |
ispartof | Ground water, 2021-09, Vol.59 (5), p.728-744 |
issn | 0017-467X 1745-6584 |
language | eng |
recordid | cdi_proquest_miscellaneous_2505360807 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aquifers Benchmarks Calibration Computer applications Data Data analysis Estimates Groundwater Mathematical models Parameters Proper Orthogonal Decomposition Robustness Statistical methods Uncertainty Uniqueness |
title | Robust Data Worth Analysis with Surrogate Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Data%20Worth%20Analysis%20with%20Surrogate%20Models&rft.jtitle=Ground%20water&rft.au=Gosses,%20Moritz&rft.date=2021-09&rft.volume=59&rft.issue=5&rft.spage=728&rft.epage=744&rft.pages=728-744&rft.issn=0017-467X&rft.eissn=1745-6584&rft_id=info:doi/10.1111/gwat.13098&rft_dat=%3Cproquest_cross%3E2571925327%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4168-96a23bcddf708791e7837bd1c97fdde10e16d64634172bfe3c00430b80e0412f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2571925327&rft_id=info:pmid/33763867&rfr_iscdi=true |