Loading…

Robust Data Worth Analysis with Surrogate Models

Highly detailed physically based groundwater models are often applied to make predictions of system states under unknown forcing. The required analysis of uncertainty is often unfeasible due to the high computational demand. We combine two possible solution strategies: (1) the use of faster surrogat...

Full description

Saved in:
Bibliographic Details
Published in:Ground water 2021-09, Vol.59 (5), p.728-744
Main Authors: Gosses, Moritz, Wöhling, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4168-96a23bcddf708791e7837bd1c97fdde10e16d64634172bfe3c00430b80e0412f3
cites cdi_FETCH-LOGICAL-a4168-96a23bcddf708791e7837bd1c97fdde10e16d64634172bfe3c00430b80e0412f3
container_end_page 744
container_issue 5
container_start_page 728
container_title Ground water
container_volume 59
creator Gosses, Moritz
Wöhling, Thomas
description Highly detailed physically based groundwater models are often applied to make predictions of system states under unknown forcing. The required analysis of uncertainty is often unfeasible due to the high computational demand. We combine two possible solution strategies: (1) the use of faster surrogate models; and (2) a robust data worth analysis combining quick first‐order second‐moment uncertainty quantification with null‐space Monte Carlo techniques to account for parametric uncertainty. A structurally and parametrically simplified model and a proper orthogonal decomposition (POD) surrogate are investigated. Data worth estimations by both surrogates are compared against estimates by a complex MODFLOW benchmark model of an aquifer in New Zealand. Data worth is defined as the change in post‐calibration predictive uncertainty of groundwater head, river‐groundwater exchange flux, and drain flux data, compared to the calibrated model. It incorporates existing observations, potential new measurements of system states (“additional” data) as well as knowledge of model parameters (“parametric” data). The data worth analysis is extended to account for non‐uniqueness of model parameters by null‐space Monte Carlo sampling. Data worth estimates of the surrogates and the benchmark suggest good agreement for both surrogates in estimating worth of existing data. The structural simplification surrogate only partially reproduces the worth of “additional” data and is unable to estimate “parametric” data, while the POD model is in agreement with the complex benchmark for both “additional” and “parametric” data. The variance of the POD data worth estimates suggests the need to account for parameter non‐uniqueness, like presented here, for robust results.
doi_str_mv 10.1111/gwat.13098
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2505360807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571925327</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4168-96a23bcddf708791e7837bd1c97fdde10e16d64634172bfe3c00430b80e0412f3</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgipvTix9ACl5E6Hxp0iQ9jqlTmAg6mbeQNuns6JaZtIx9e1s7PXjwXR4Pfvzh_RE6xzDEzdwstqoaYgKJOEB9zGkcsljQQ9QHwDykjL_30In3SwAgCSTHqEcIZ0Qw3kfwYtPaV8GtqlQwt676CEZrVe584YNt0VyvtXN2oSoTPFltSn-KjnJVenO23wP0dn83Gz-E0-fJ43g0DRXFTIQJUxFJM61zDoIn2HBBeKpxlvBca4PBYKYZZYRiHqW5IRkAJZAKMEBxlJMBuupyN85-1sZXclX4zJSlWhtbexnFEBMGAnhDL__Qpa1d80WrOE6imEStuu5U5qz3zuRy44qVcjuJQbY9yrZH-d1jgy_2kXW6MvqX_hTXANyBbVGa3T9RcjIfzbrQL3Mxex4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571925327</pqid></control><display><type>article</type><title>Robust Data Worth Analysis with Surrogate Models</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Gosses, Moritz ; Wöhling, Thomas</creator><creatorcontrib>Gosses, Moritz ; Wöhling, Thomas</creatorcontrib><description>Highly detailed physically based groundwater models are often applied to make predictions of system states under unknown forcing. The required analysis of uncertainty is often unfeasible due to the high computational demand. We combine two possible solution strategies: (1) the use of faster surrogate models; and (2) a robust data worth analysis combining quick first‐order second‐moment uncertainty quantification with null‐space Monte Carlo techniques to account for parametric uncertainty. A structurally and parametrically simplified model and a proper orthogonal decomposition (POD) surrogate are investigated. Data worth estimations by both surrogates are compared against estimates by a complex MODFLOW benchmark model of an aquifer in New Zealand. Data worth is defined as the change in post‐calibration predictive uncertainty of groundwater head, river‐groundwater exchange flux, and drain flux data, compared to the calibrated model. It incorporates existing observations, potential new measurements of system states (“additional” data) as well as knowledge of model parameters (“parametric” data). The data worth analysis is extended to account for non‐uniqueness of model parameters by null‐space Monte Carlo sampling. Data worth estimates of the surrogates and the benchmark suggest good agreement for both surrogates in estimating worth of existing data. The structural simplification surrogate only partially reproduces the worth of “additional” data and is unable to estimate “parametric” data, while the POD model is in agreement with the complex benchmark for both “additional” and “parametric” data. The variance of the POD data worth estimates suggests the need to account for parameter non‐uniqueness, like presented here, for robust results.</description><identifier>ISSN: 0017-467X</identifier><identifier>EISSN: 1745-6584</identifier><identifier>DOI: 10.1111/gwat.13098</identifier><identifier>PMID: 33763867</identifier><language>eng</language><publisher>Malden, US: Blackwell Publishing Ltd</publisher><subject>Aquifers ; Benchmarks ; Calibration ; Computer applications ; Data ; Data analysis ; Estimates ; Groundwater ; Mathematical models ; Parameters ; Proper Orthogonal Decomposition ; Robustness ; Statistical methods ; Uncertainty ; Uniqueness</subject><ispartof>Ground water, 2021-09, Vol.59 (5), p.728-744</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of National Ground Water Association.</rights><rights>2021 The Authors. Groundwater published by Wiley Periodicals LLC on behalf of National Ground Water Association.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4168-96a23bcddf708791e7837bd1c97fdde10e16d64634172bfe3c00430b80e0412f3</citedby><cites>FETCH-LOGICAL-a4168-96a23bcddf708791e7837bd1c97fdde10e16d64634172bfe3c00430b80e0412f3</cites><orcidid>0000-0003-2963-0965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33763867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gosses, Moritz</creatorcontrib><creatorcontrib>Wöhling, Thomas</creatorcontrib><title>Robust Data Worth Analysis with Surrogate Models</title><title>Ground water</title><addtitle>Ground Water</addtitle><description>Highly detailed physically based groundwater models are often applied to make predictions of system states under unknown forcing. The required analysis of uncertainty is often unfeasible due to the high computational demand. We combine two possible solution strategies: (1) the use of faster surrogate models; and (2) a robust data worth analysis combining quick first‐order second‐moment uncertainty quantification with null‐space Monte Carlo techniques to account for parametric uncertainty. A structurally and parametrically simplified model and a proper orthogonal decomposition (POD) surrogate are investigated. Data worth estimations by both surrogates are compared against estimates by a complex MODFLOW benchmark model of an aquifer in New Zealand. Data worth is defined as the change in post‐calibration predictive uncertainty of groundwater head, river‐groundwater exchange flux, and drain flux data, compared to the calibrated model. It incorporates existing observations, potential new measurements of system states (“additional” data) as well as knowledge of model parameters (“parametric” data). The data worth analysis is extended to account for non‐uniqueness of model parameters by null‐space Monte Carlo sampling. Data worth estimates of the surrogates and the benchmark suggest good agreement for both surrogates in estimating worth of existing data. The structural simplification surrogate only partially reproduces the worth of “additional” data and is unable to estimate “parametric” data, while the POD model is in agreement with the complex benchmark for both “additional” and “parametric” data. The variance of the POD data worth estimates suggests the need to account for parameter non‐uniqueness, like presented here, for robust results.</description><subject>Aquifers</subject><subject>Benchmarks</subject><subject>Calibration</subject><subject>Computer applications</subject><subject>Data</subject><subject>Data analysis</subject><subject>Estimates</subject><subject>Groundwater</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Proper Orthogonal Decomposition</subject><subject>Robustness</subject><subject>Statistical methods</subject><subject>Uncertainty</subject><subject>Uniqueness</subject><issn>0017-467X</issn><issn>1745-6584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90EFLwzAUB_AgipvTix9ACl5E6Hxp0iQ9jqlTmAg6mbeQNuns6JaZtIx9e1s7PXjwXR4Pfvzh_RE6xzDEzdwstqoaYgKJOEB9zGkcsljQQ9QHwDykjL_30In3SwAgCSTHqEcIZ0Qw3kfwYtPaV8GtqlQwt676CEZrVe584YNt0VyvtXN2oSoTPFltSn-KjnJVenO23wP0dn83Gz-E0-fJ43g0DRXFTIQJUxFJM61zDoIn2HBBeKpxlvBca4PBYKYZZYRiHqW5IRkAJZAKMEBxlJMBuupyN85-1sZXclX4zJSlWhtbexnFEBMGAnhDL__Qpa1d80WrOE6imEStuu5U5qz3zuRy44qVcjuJQbY9yrZH-d1jgy_2kXW6MvqX_hTXANyBbVGa3T9RcjIfzbrQL3Mxex4</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Gosses, Moritz</creator><creator>Wöhling, Thomas</creator><general>Blackwell Publishing Ltd</general><general>Ground Water Publishing Company</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2963-0965</orcidid></search><sort><creationdate>202109</creationdate><title>Robust Data Worth Analysis with Surrogate Models</title><author>Gosses, Moritz ; Wöhling, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4168-96a23bcddf708791e7837bd1c97fdde10e16d64634172bfe3c00430b80e0412f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aquifers</topic><topic>Benchmarks</topic><topic>Calibration</topic><topic>Computer applications</topic><topic>Data</topic><topic>Data analysis</topic><topic>Estimates</topic><topic>Groundwater</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Proper Orthogonal Decomposition</topic><topic>Robustness</topic><topic>Statistical methods</topic><topic>Uncertainty</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gosses, Moritz</creatorcontrib><creatorcontrib>Wöhling, Thomas</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Free Archive</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ground water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gosses, Moritz</au><au>Wöhling, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Data Worth Analysis with Surrogate Models</atitle><jtitle>Ground water</jtitle><addtitle>Ground Water</addtitle><date>2021-09</date><risdate>2021</risdate><volume>59</volume><issue>5</issue><spage>728</spage><epage>744</epage><pages>728-744</pages><issn>0017-467X</issn><eissn>1745-6584</eissn><abstract>Highly detailed physically based groundwater models are often applied to make predictions of system states under unknown forcing. The required analysis of uncertainty is often unfeasible due to the high computational demand. We combine two possible solution strategies: (1) the use of faster surrogate models; and (2) a robust data worth analysis combining quick first‐order second‐moment uncertainty quantification with null‐space Monte Carlo techniques to account for parametric uncertainty. A structurally and parametrically simplified model and a proper orthogonal decomposition (POD) surrogate are investigated. Data worth estimations by both surrogates are compared against estimates by a complex MODFLOW benchmark model of an aquifer in New Zealand. Data worth is defined as the change in post‐calibration predictive uncertainty of groundwater head, river‐groundwater exchange flux, and drain flux data, compared to the calibrated model. It incorporates existing observations, potential new measurements of system states (“additional” data) as well as knowledge of model parameters (“parametric” data). The data worth analysis is extended to account for non‐uniqueness of model parameters by null‐space Monte Carlo sampling. Data worth estimates of the surrogates and the benchmark suggest good agreement for both surrogates in estimating worth of existing data. The structural simplification surrogate only partially reproduces the worth of “additional” data and is unable to estimate “parametric” data, while the POD model is in agreement with the complex benchmark for both “additional” and “parametric” data. The variance of the POD data worth estimates suggests the need to account for parameter non‐uniqueness, like presented here, for robust results.</abstract><cop>Malden, US</cop><pub>Blackwell Publishing Ltd</pub><pmid>33763867</pmid><doi>10.1111/gwat.13098</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2963-0965</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-467X
ispartof Ground water, 2021-09, Vol.59 (5), p.728-744
issn 0017-467X
1745-6584
language eng
recordid cdi_proquest_miscellaneous_2505360807
source Wiley-Blackwell Read & Publish Collection
subjects Aquifers
Benchmarks
Calibration
Computer applications
Data
Data analysis
Estimates
Groundwater
Mathematical models
Parameters
Proper Orthogonal Decomposition
Robustness
Statistical methods
Uncertainty
Uniqueness
title Robust Data Worth Analysis with Surrogate Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Data%20Worth%20Analysis%20with%20Surrogate%20Models&rft.jtitle=Ground%20water&rft.au=Gosses,%20Moritz&rft.date=2021-09&rft.volume=59&rft.issue=5&rft.spage=728&rft.epage=744&rft.pages=728-744&rft.issn=0017-467X&rft.eissn=1745-6584&rft_id=info:doi/10.1111/gwat.13098&rft_dat=%3Cproquest_cross%3E2571925327%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4168-96a23bcddf708791e7837bd1c97fdde10e16d64634172bfe3c00430b80e0412f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2571925327&rft_id=info:pmid/33763867&rfr_iscdi=true