Loading…

Ambient Humidity Affects Development, Survival, and Reproduction of the Invasive Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in China

Ambient humidity can directly affect the water balance in insects. The migratory fall armyworm, Spodoptera frugiperda Smith, has spread to more than 60 countries and regions in Africa, Asia, and Oceania that have a great difference in average ambient humidity. Understanding the effects of ambient hu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of economic entomology 2021-06, Vol.114 (3), p.1145-1158
Main Authors: He, Limei, Zhao, Shengyuan, Ali, Abid, Ge, Shishuai, Wu, Kongming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ambient humidity can directly affect the water balance in insects. The migratory fall armyworm, Spodoptera frugiperda Smith, has spread to more than 60 countries and regions in Africa, Asia, and Oceania that have a great difference in average ambient humidity. Understanding the effects of ambient humidity changes on its development, survival, and reproduction can help to predict its population dynamics in different habitats. Therefore, we evaluated the effects of atmospheric relative humidity (RH) on the development, survival, and reproduction and soil moisture on the pupation and emergence of fall armyworm. As a result, survival and pupal mass increased significantly with increasing RH. Among the five RHs tested, 80% RH was the most suitable for fall armyworm with the highest intrinsic rate of increase (r), finite rate of increase (λ), and net reproduction rate (R0). The population growth at the different RHs in decreasing order was 80 > 100 > 60 > 40 > 20%. A relative moisture (RM) of soil from 6.80 to 47.59% was suitable for fall armyworm pupation, survival, and eclosion, but fall armyworm could not pupate normally in soil with 88.39 and 95.19% RM. The survival and emergence rate of fall armyworm pupae were reduced by irrigation that increased the RM after the mature larvae entered the soil. These findings may be helpful for refining laboratory rearing protocols, population forecasting, and management of fall armyworm.
ISSN:0022-0493
1938-291X
DOI:10.1093/jee/toab056