Loading…

Incidence and Management of Effusions Before and After CD19-Directed Chimeric Antigen Receptor (CAR) T Cell Therapy in Large B Cell Lymphoma

In patients with lymphoma, third-space fluid accumulations may develop or worsen during cytokine release syndrome (CRS) associated with chimeric antigen receptor (CAR) T cell therapy. Pre-existing symptomatic pleural effusions were excluded by the ZUMA-1 trial of axicabtagene ciloleucel for large B...

Full description

Saved in:
Bibliographic Details
Published in:Transplantation and cellular therapy 2021-03, Vol.27 (3), p.242.e1-242.e6
Main Authors: Mirza, Abu-Sayeef, Kumar, Ambuj, Hashmi, Hamza, Garcia, Franco, Logothetis, Constantine N., Darwin, Alicia, Faramand, Rawan, Reid, Kayla, Bachmeier, Christina, Chavez, Julio C., Shah, Bijal, Pinilla-Ibarz, Javier, Khimani, Farhad, Lazaryan, Aleksandr, Liu, Hien, Davila, Marco L., Nishihori, Taiga, Locke, Frederick L., Jain, Michael D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In patients with lymphoma, third-space fluid accumulations may develop or worsen during cytokine release syndrome (CRS) associated with chimeric antigen receptor (CAR) T cell therapy. Pre-existing symptomatic pleural effusions were excluded by the ZUMA-1 trial of axicabtagene ciloleucel for large B cell lymphoma (LBCL) and variants. The incidence and management of effusions during CAR T cell therapy for LBCL are unknown. We performed a single-center retrospective study evaluating 148 patients receiving CD19-directed CAR T cell therapy for LBCL between May 2015 and September 2019. We retrospectively identified patients who had radiographic pleural, pericardial, or peritoneal effusions that were present prior to the time of CAR T infusion (pre-CAR T) or that newly developed during the first 30 days after CAR T-cell infusion (post-CAR T). Of 148 patients, 19 patients had a pre-CAR T effusion, 17 patients without pre-existing effusion developed a new infusion after CAR T, and 112 patients had no effusions. Comparing pre-CAR T effusions to new effusions post-CAR T, pre-CAR T effusions were more often malignant (84% versus 12%), persistent beyond 30 days (95% versus 18%), and required interventional drainage after CAR T infusion (79% versus 0%). Compared to patients with no effusion, patients with pre-CAR T therapy effusions had a higher frequency of high-risk baseline characteristics, such as bulky disease and high International Prognostic Index. Similarly, patients with pre-CAR T therapy effusions had a higher rate of toxicity with grade 3 or higher CRS occurring in 32% of patients. On multivariate analysis adjusting for age, Eastern Cooperative Oncology Group status, bulky disease, albumin, and lactate dehydrogenase, a pre-CAR T therapy effusion was associated with reduced overall survival (hazard ratio, 2.34; 95% confidence interval, 1.09 to 5.03; P = .03). Moreover, there was higher non-relapse mortality (11% versus 1%; P = .005). Post-CAR T effusions were not associated with significant difference in survival. Effusions commonly complicate CAR T cell therapy for lymphoma. Malignant effusions that occur prior to CAR T therapy are frequently persistent and require therapeutic intervention, and patients have a higher rate of toxicity and death. Effusions that newly occur after CAR T therapy can generally be managed medically and tend not to persist.
ISSN:2666-6367
2666-6367
DOI:10.1016/j.jtct.2020.12.025