Loading…

A Comparative Analysis of MRI Automated Segmentation of Subcortical Brain Volumes in a Large Dataset of Elderly Subjects

In this study, we perform a comparative analysis of automated image segmentation of subcortical structures in the elderly brain. Manual segmentation is very time-consuming and automated methods are gaining importance as a clinical tool for diagnosis. The two most commonly used software libraries for...

Full description

Saved in:
Bibliographic Details
Published in:Neuroinformatics (Totowa, N.J.) N.J.), 2022, Vol.20 (1), p.63-72
Main Authors: Gomez-Ramirez, Jaime, Quilis-Sancho, Javier, Fernandez-Blazquez, Miguel A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-77423c3260993f0b488f9d2b6c2dfb755fdebc90e1e9ff842bfa238d284ac1b73
cites cdi_FETCH-LOGICAL-c375t-77423c3260993f0b488f9d2b6c2dfb755fdebc90e1e9ff842bfa238d284ac1b73
container_end_page 72
container_issue 1
container_start_page 63
container_title Neuroinformatics (Totowa, N.J.)
container_volume 20
creator Gomez-Ramirez, Jaime
Quilis-Sancho, Javier
Fernandez-Blazquez, Miguel A.
description In this study, we perform a comparative analysis of automated image segmentation of subcortical structures in the elderly brain. Manual segmentation is very time-consuming and automated methods are gaining importance as a clinical tool for diagnosis. The two most commonly used software libraries for brain segmentation -FreeSurfer and FSL- are put to work in a large dataset of 4,028 magnetic resonance imaging (MRI) scans collected for this study. We find a lack of linear correlation between the segmentation volume estimates obtained from FreeSurfer and FSL. On the other hand, FreeSurfer volume estimates tend to be larger thanFSL estimates of the areas putamen, thalamus, amygdala, caudate, pallidum, hippocampus, and accumbens. The characterization of the performance of brain segmentation algorithms in large datasets as the one presented here is a necessary step towards partially or fully automated end-to-end neuroimaging workflow both in clinical and research settings.
doi_str_mv 10.1007/s12021-021-09520-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2507150071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721999467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-77423c3260993f0b488f9d2b6c2dfb755fdebc90e1e9ff842bfa238d284ac1b73</originalsourceid><addsrcrecordid>eNp9kU1r20AQhpeSUDtp_0APZSGXXNTsh6TVHh3ny-BSqNtexWo1a2QkrbO7CnV-fVe2m0AOOQwzMM_7DsyL0BdKvlFCxJWnjDCa7EtmjCTPH9CUZplMCCnkyThzmTAh6QSdeb8hhOWCkI9owrkoeJ4XU_R3hue22yqnQvMEeNarducbj63B338u8GwItlMBaryCdQd9iJjtx-1qqLR1odGqxddONT3-Y9uhA4_jqPBSuTXgGxWUhzDyt20Nrt2Nug3o4D-hU6NaD5-P_Rz9vrv9NX9Ilj_uF_PZMtFcZCERImVcc5YTKbkhVVoURtasyjWrTSWyzNRQaUmAgjSmSFllFONFzYpUaVoJfo4uD75bZx8H8KHsGq-hbVUPdvAly4igWXwnjejFG3RjBxc_EinBqJQyzUdDdqC0s947MOXWNZ1yu5KScsylPORS7mvMpXyOoq9H66HqoH6R_A8iAvwA-Ljq1-Beb79j-w_y25jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721999467</pqid></control><display><type>article</type><title>A Comparative Analysis of MRI Automated Segmentation of Subcortical Brain Volumes in a Large Dataset of Elderly Subjects</title><source>Springer Nature</source><creator>Gomez-Ramirez, Jaime ; Quilis-Sancho, Javier ; Fernandez-Blazquez, Miguel A.</creator><creatorcontrib>Gomez-Ramirez, Jaime ; Quilis-Sancho, Javier ; Fernandez-Blazquez, Miguel A.</creatorcontrib><description>In this study, we perform a comparative analysis of automated image segmentation of subcortical structures in the elderly brain. Manual segmentation is very time-consuming and automated methods are gaining importance as a clinical tool for diagnosis. The two most commonly used software libraries for brain segmentation -FreeSurfer and FSL- are put to work in a large dataset of 4,028 magnetic resonance imaging (MRI) scans collected for this study. We find a lack of linear correlation between the segmentation volume estimates obtained from FreeSurfer and FSL. On the other hand, FreeSurfer volume estimates tend to be larger thanFSL estimates of the areas putamen, thalamus, amygdala, caudate, pallidum, hippocampus, and accumbens. The characterization of the performance of brain segmentation algorithms in large datasets as the one presented here is a necessary step towards partially or fully automated end-to-end neuroimaging workflow both in clinical and research settings.</description><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-021-09520-z</identifier><identifier>PMID: 33783668</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aged ; Aging ; Algorithms ; Alzheimer's disease ; Amygdala ; Atrophy ; Automation ; Big Data ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - diagnostic imaging ; Brain - pathology ; Brain research ; Comparative analysis ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Datasets ; Dementia ; Globus pallidus ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Longitudinal studies ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging ; Morphology ; Neuroimaging ; Neuroimaging - methods ; Neurology ; Neurosciences ; Nucleus accumbens ; Older people ; Original Article ; Putamen ; Segmentation ; Software ; Thalamus</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2022, Vol.20 (1), p.63-72</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-77423c3260993f0b488f9d2b6c2dfb755fdebc90e1e9ff842bfa238d284ac1b73</citedby><cites>FETCH-LOGICAL-c375t-77423c3260993f0b488f9d2b6c2dfb755fdebc90e1e9ff842bfa238d284ac1b73</cites><orcidid>0000-0002-9440-7711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33783668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Ramirez, Jaime</creatorcontrib><creatorcontrib>Quilis-Sancho, Javier</creatorcontrib><creatorcontrib>Fernandez-Blazquez, Miguel A.</creatorcontrib><title>A Comparative Analysis of MRI Automated Segmentation of Subcortical Brain Volumes in a Large Dataset of Elderly Subjects</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>In this study, we perform a comparative analysis of automated image segmentation of subcortical structures in the elderly brain. Manual segmentation is very time-consuming and automated methods are gaining importance as a clinical tool for diagnosis. The two most commonly used software libraries for brain segmentation -FreeSurfer and FSL- are put to work in a large dataset of 4,028 magnetic resonance imaging (MRI) scans collected for this study. We find a lack of linear correlation between the segmentation volume estimates obtained from FreeSurfer and FSL. On the other hand, FreeSurfer volume estimates tend to be larger thanFSL estimates of the areas putamen, thalamus, amygdala, caudate, pallidum, hippocampus, and accumbens. The characterization of the performance of brain segmentation algorithms in large datasets as the one presented here is a necessary step towards partially or fully automated end-to-end neuroimaging workflow both in clinical and research settings.</description><subject>Aged</subject><subject>Aging</subject><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Amygdala</subject><subject>Atrophy</subject><subject>Automation</subject><subject>Big Data</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Brain research</subject><subject>Comparative analysis</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Datasets</subject><subject>Dementia</subject><subject>Globus pallidus</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Longitudinal studies</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>Morphology</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Nucleus accumbens</subject><subject>Older people</subject><subject>Original Article</subject><subject>Putamen</subject><subject>Segmentation</subject><subject>Software</subject><subject>Thalamus</subject><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r20AQhpeSUDtp_0APZSGXXNTsh6TVHh3ny-BSqNtexWo1a2QkrbO7CnV-fVe2m0AOOQwzMM_7DsyL0BdKvlFCxJWnjDCa7EtmjCTPH9CUZplMCCnkyThzmTAh6QSdeb8hhOWCkI9owrkoeJ4XU_R3hue22yqnQvMEeNarducbj63B338u8GwItlMBaryCdQd9iJjtx-1qqLR1odGqxddONT3-Y9uhA4_jqPBSuTXgGxWUhzDyt20Nrt2Nug3o4D-hU6NaD5-P_Rz9vrv9NX9Ilj_uF_PZMtFcZCERImVcc5YTKbkhVVoURtasyjWrTSWyzNRQaUmAgjSmSFllFONFzYpUaVoJfo4uD75bZx8H8KHsGq-hbVUPdvAly4igWXwnjejFG3RjBxc_EinBqJQyzUdDdqC0s947MOXWNZ1yu5KScsylPORS7mvMpXyOoq9H66HqoH6R_A8iAvwA-Ljq1-Beb79j-w_y25jw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Gomez-Ramirez, Jaime</creator><creator>Quilis-Sancho, Javier</creator><creator>Fernandez-Blazquez, Miguel A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9440-7711</orcidid></search><sort><creationdate>2022</creationdate><title>A Comparative Analysis of MRI Automated Segmentation of Subcortical Brain Volumes in a Large Dataset of Elderly Subjects</title><author>Gomez-Ramirez, Jaime ; Quilis-Sancho, Javier ; Fernandez-Blazquez, Miguel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-77423c3260993f0b488f9d2b6c2dfb755fdebc90e1e9ff842bfa238d284ac1b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aged</topic><topic>Aging</topic><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Amygdala</topic><topic>Atrophy</topic><topic>Automation</topic><topic>Big Data</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Brain research</topic><topic>Comparative analysis</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Datasets</topic><topic>Dementia</topic><topic>Globus pallidus</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Longitudinal studies</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>Morphology</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Nucleus accumbens</topic><topic>Older people</topic><topic>Original Article</topic><topic>Putamen</topic><topic>Segmentation</topic><topic>Software</topic><topic>Thalamus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Ramirez, Jaime</creatorcontrib><creatorcontrib>Quilis-Sancho, Javier</creatorcontrib><creatorcontrib>Fernandez-Blazquez, Miguel A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Ramirez, Jaime</au><au>Quilis-Sancho, Javier</au><au>Fernandez-Blazquez, Miguel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparative Analysis of MRI Automated Segmentation of Subcortical Brain Volumes in a Large Dataset of Elderly Subjects</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2022</date><risdate>2022</risdate><volume>20</volume><issue>1</issue><spage>63</spage><epage>72</epage><pages>63-72</pages><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>In this study, we perform a comparative analysis of automated image segmentation of subcortical structures in the elderly brain. Manual segmentation is very time-consuming and automated methods are gaining importance as a clinical tool for diagnosis. The two most commonly used software libraries for brain segmentation -FreeSurfer and FSL- are put to work in a large dataset of 4,028 magnetic resonance imaging (MRI) scans collected for this study. We find a lack of linear correlation between the segmentation volume estimates obtained from FreeSurfer and FSL. On the other hand, FreeSurfer volume estimates tend to be larger thanFSL estimates of the areas putamen, thalamus, amygdala, caudate, pallidum, hippocampus, and accumbens. The characterization of the performance of brain segmentation algorithms in large datasets as the one presented here is a necessary step towards partially or fully automated end-to-end neuroimaging workflow both in clinical and research settings.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33783668</pmid><doi>10.1007/s12021-021-09520-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9440-7711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1539-2791
ispartof Neuroinformatics (Totowa, N.J.), 2022, Vol.20 (1), p.63-72
issn 1539-2791
1559-0089
language eng
recordid cdi_proquest_miscellaneous_2507150071
source Springer Nature
subjects Aged
Aging
Algorithms
Alzheimer's disease
Amygdala
Atrophy
Automation
Big Data
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Brain - diagnostic imaging
Brain - pathology
Brain research
Comparative analysis
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Datasets
Dementia
Globus pallidus
Humans
Image processing
Image Processing, Computer-Assisted - methods
Longitudinal studies
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Morphology
Neuroimaging
Neuroimaging - methods
Neurology
Neurosciences
Nucleus accumbens
Older people
Original Article
Putamen
Segmentation
Software
Thalamus
title A Comparative Analysis of MRI Automated Segmentation of Subcortical Brain Volumes in a Large Dataset of Elderly Subjects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparative%20Analysis%20of%20MRI%20Automated%20Segmentation%20of%20Subcortical%20Brain%20Volumes%20in%20a%20Large%20Dataset%20of%20Elderly%20Subjects&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Gomez-Ramirez,%20Jaime&rft.date=2022&rft.volume=20&rft.issue=1&rft.spage=63&rft.epage=72&rft.pages=63-72&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-021-09520-z&rft_dat=%3Cproquest_cross%3E2721999467%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-77423c3260993f0b488f9d2b6c2dfb755fdebc90e1e9ff842bfa238d284ac1b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2721999467&rft_id=info:pmid/33783668&rfr_iscdi=true