Loading…
A Comparative Analysis of MRI Automated Segmentation of Subcortical Brain Volumes in a Large Dataset of Elderly Subjects
In this study, we perform a comparative analysis of automated image segmentation of subcortical structures in the elderly brain. Manual segmentation is very time-consuming and automated methods are gaining importance as a clinical tool for diagnosis. The two most commonly used software libraries for...
Saved in:
Published in: | Neuroinformatics (Totowa, N.J.) N.J.), 2022, Vol.20 (1), p.63-72 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-77423c3260993f0b488f9d2b6c2dfb755fdebc90e1e9ff842bfa238d284ac1b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-77423c3260993f0b488f9d2b6c2dfb755fdebc90e1e9ff842bfa238d284ac1b73 |
container_end_page | 72 |
container_issue | 1 |
container_start_page | 63 |
container_title | Neuroinformatics (Totowa, N.J.) |
container_volume | 20 |
creator | Gomez-Ramirez, Jaime Quilis-Sancho, Javier Fernandez-Blazquez, Miguel A. |
description | In this study, we perform a comparative analysis of automated image segmentation of subcortical structures in the elderly brain. Manual segmentation is very time-consuming and automated methods are gaining importance as a clinical tool for diagnosis. The two most commonly used software libraries for brain segmentation -FreeSurfer and FSL- are put to work in a large dataset of 4,028 magnetic resonance imaging (MRI) scans collected for this study. We find a lack of linear correlation between the segmentation volume estimates obtained from FreeSurfer and FSL. On the other hand, FreeSurfer volume estimates tend to be larger thanFSL estimates of the areas putamen, thalamus, amygdala, caudate, pallidum, hippocampus, and accumbens. The characterization of the performance of brain segmentation algorithms in large datasets as the one presented here is a necessary step towards partially or fully automated end-to-end neuroimaging workflow both in clinical and research settings. |
doi_str_mv | 10.1007/s12021-021-09520-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2507150071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721999467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-77423c3260993f0b488f9d2b6c2dfb755fdebc90e1e9ff842bfa238d284ac1b73</originalsourceid><addsrcrecordid>eNp9kU1r20AQhpeSUDtp_0APZSGXXNTsh6TVHh3ny-BSqNtexWo1a2QkrbO7CnV-fVe2m0AOOQwzMM_7DsyL0BdKvlFCxJWnjDCa7EtmjCTPH9CUZplMCCnkyThzmTAh6QSdeb8hhOWCkI9owrkoeJ4XU_R3hue22yqnQvMEeNarducbj63B338u8GwItlMBaryCdQd9iJjtx-1qqLR1odGqxddONT3-Y9uhA4_jqPBSuTXgGxWUhzDyt20Nrt2Nug3o4D-hU6NaD5-P_Rz9vrv9NX9Ilj_uF_PZMtFcZCERImVcc5YTKbkhVVoURtasyjWrTSWyzNRQaUmAgjSmSFllFONFzYpUaVoJfo4uD75bZx8H8KHsGq-hbVUPdvAly4igWXwnjejFG3RjBxc_EinBqJQyzUdDdqC0s947MOXWNZ1yu5KScsylPORS7mvMpXyOoq9H66HqoH6R_A8iAvwA-Ljq1-Beb79j-w_y25jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721999467</pqid></control><display><type>article</type><title>A Comparative Analysis of MRI Automated Segmentation of Subcortical Brain Volumes in a Large Dataset of Elderly Subjects</title><source>Springer Nature</source><creator>Gomez-Ramirez, Jaime ; Quilis-Sancho, Javier ; Fernandez-Blazquez, Miguel A.</creator><creatorcontrib>Gomez-Ramirez, Jaime ; Quilis-Sancho, Javier ; Fernandez-Blazquez, Miguel A.</creatorcontrib><description>In this study, we perform a comparative analysis of automated image segmentation of subcortical structures in the elderly brain. Manual segmentation is very time-consuming and automated methods are gaining importance as a clinical tool for diagnosis. The two most commonly used software libraries for brain segmentation -FreeSurfer and FSL- are put to work in a large dataset of 4,028 magnetic resonance imaging (MRI) scans collected for this study. We find a lack of linear correlation between the segmentation volume estimates obtained from FreeSurfer and FSL. On the other hand, FreeSurfer volume estimates tend to be larger thanFSL estimates of the areas putamen, thalamus, amygdala, caudate, pallidum, hippocampus, and accumbens. The characterization of the performance of brain segmentation algorithms in large datasets as the one presented here is a necessary step towards partially or fully automated end-to-end neuroimaging workflow both in clinical and research settings.</description><identifier>ISSN: 1539-2791</identifier><identifier>EISSN: 1559-0089</identifier><identifier>DOI: 10.1007/s12021-021-09520-z</identifier><identifier>PMID: 33783668</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aged ; Aging ; Algorithms ; Alzheimer's disease ; Amygdala ; Atrophy ; Automation ; Big Data ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - diagnostic imaging ; Brain - pathology ; Brain research ; Comparative analysis ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; Datasets ; Dementia ; Globus pallidus ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Longitudinal studies ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging ; Morphology ; Neuroimaging ; Neuroimaging - methods ; Neurology ; Neurosciences ; Nucleus accumbens ; Older people ; Original Article ; Putamen ; Segmentation ; Software ; Thalamus</subject><ispartof>Neuroinformatics (Totowa, N.J.), 2022, Vol.20 (1), p.63-72</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-77423c3260993f0b488f9d2b6c2dfb755fdebc90e1e9ff842bfa238d284ac1b73</citedby><cites>FETCH-LOGICAL-c375t-77423c3260993f0b488f9d2b6c2dfb755fdebc90e1e9ff842bfa238d284ac1b73</cites><orcidid>0000-0002-9440-7711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33783668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Ramirez, Jaime</creatorcontrib><creatorcontrib>Quilis-Sancho, Javier</creatorcontrib><creatorcontrib>Fernandez-Blazquez, Miguel A.</creatorcontrib><title>A Comparative Analysis of MRI Automated Segmentation of Subcortical Brain Volumes in a Large Dataset of Elderly Subjects</title><title>Neuroinformatics (Totowa, N.J.)</title><addtitle>Neuroinform</addtitle><addtitle>Neuroinformatics</addtitle><description>In this study, we perform a comparative analysis of automated image segmentation of subcortical structures in the elderly brain. Manual segmentation is very time-consuming and automated methods are gaining importance as a clinical tool for diagnosis. The two most commonly used software libraries for brain segmentation -FreeSurfer and FSL- are put to work in a large dataset of 4,028 magnetic resonance imaging (MRI) scans collected for this study. We find a lack of linear correlation between the segmentation volume estimates obtained from FreeSurfer and FSL. On the other hand, FreeSurfer volume estimates tend to be larger thanFSL estimates of the areas putamen, thalamus, amygdala, caudate, pallidum, hippocampus, and accumbens. The characterization of the performance of brain segmentation algorithms in large datasets as the one presented here is a necessary step towards partially or fully automated end-to-end neuroimaging workflow both in clinical and research settings.</description><subject>Aged</subject><subject>Aging</subject><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Amygdala</subject><subject>Atrophy</subject><subject>Automation</subject><subject>Big Data</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Brain research</subject><subject>Comparative analysis</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>Datasets</subject><subject>Dementia</subject><subject>Globus pallidus</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Longitudinal studies</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>Morphology</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Nucleus accumbens</subject><subject>Older people</subject><subject>Original Article</subject><subject>Putamen</subject><subject>Segmentation</subject><subject>Software</subject><subject>Thalamus</subject><issn>1539-2791</issn><issn>1559-0089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r20AQhpeSUDtp_0APZSGXXNTsh6TVHh3ny-BSqNtexWo1a2QkrbO7CnV-fVe2m0AOOQwzMM_7DsyL0BdKvlFCxJWnjDCa7EtmjCTPH9CUZplMCCnkyThzmTAh6QSdeb8hhOWCkI9owrkoeJ4XU_R3hue22yqnQvMEeNarducbj63B338u8GwItlMBaryCdQd9iJjtx-1qqLR1odGqxddONT3-Y9uhA4_jqPBSuTXgGxWUhzDyt20Nrt2Nug3o4D-hU6NaD5-P_Rz9vrv9NX9Ilj_uF_PZMtFcZCERImVcc5YTKbkhVVoURtasyjWrTSWyzNRQaUmAgjSmSFllFONFzYpUaVoJfo4uD75bZx8H8KHsGq-hbVUPdvAly4igWXwnjejFG3RjBxc_EinBqJQyzUdDdqC0s947MOXWNZ1yu5KScsylPORS7mvMpXyOoq9H66HqoH6R_A8iAvwA-Ljq1-Beb79j-w_y25jw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Gomez-Ramirez, Jaime</creator><creator>Quilis-Sancho, Javier</creator><creator>Fernandez-Blazquez, Miguel A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9440-7711</orcidid></search><sort><creationdate>2022</creationdate><title>A Comparative Analysis of MRI Automated Segmentation of Subcortical Brain Volumes in a Large Dataset of Elderly Subjects</title><author>Gomez-Ramirez, Jaime ; Quilis-Sancho, Javier ; Fernandez-Blazquez, Miguel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-77423c3260993f0b488f9d2b6c2dfb755fdebc90e1e9ff842bfa238d284ac1b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aged</topic><topic>Aging</topic><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Amygdala</topic><topic>Atrophy</topic><topic>Automation</topic><topic>Big Data</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Brain research</topic><topic>Comparative analysis</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>Datasets</topic><topic>Dementia</topic><topic>Globus pallidus</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Longitudinal studies</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>Morphology</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Nucleus accumbens</topic><topic>Older people</topic><topic>Original Article</topic><topic>Putamen</topic><topic>Segmentation</topic><topic>Software</topic><topic>Thalamus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Ramirez, Jaime</creatorcontrib><creatorcontrib>Quilis-Sancho, Javier</creatorcontrib><creatorcontrib>Fernandez-Blazquez, Miguel A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez-Ramirez, Jaime</au><au>Quilis-Sancho, Javier</au><au>Fernandez-Blazquez, Miguel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparative Analysis of MRI Automated Segmentation of Subcortical Brain Volumes in a Large Dataset of Elderly Subjects</atitle><jtitle>Neuroinformatics (Totowa, N.J.)</jtitle><stitle>Neuroinform</stitle><addtitle>Neuroinformatics</addtitle><date>2022</date><risdate>2022</risdate><volume>20</volume><issue>1</issue><spage>63</spage><epage>72</epage><pages>63-72</pages><issn>1539-2791</issn><eissn>1559-0089</eissn><abstract>In this study, we perform a comparative analysis of automated image segmentation of subcortical structures in the elderly brain. Manual segmentation is very time-consuming and automated methods are gaining importance as a clinical tool for diagnosis. The two most commonly used software libraries for brain segmentation -FreeSurfer and FSL- are put to work in a large dataset of 4,028 magnetic resonance imaging (MRI) scans collected for this study. We find a lack of linear correlation between the segmentation volume estimates obtained from FreeSurfer and FSL. On the other hand, FreeSurfer volume estimates tend to be larger thanFSL estimates of the areas putamen, thalamus, amygdala, caudate, pallidum, hippocampus, and accumbens. The characterization of the performance of brain segmentation algorithms in large datasets as the one presented here is a necessary step towards partially or fully automated end-to-end neuroimaging workflow both in clinical and research settings.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33783668</pmid><doi>10.1007/s12021-021-09520-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9440-7711</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-2791 |
ispartof | Neuroinformatics (Totowa, N.J.), 2022, Vol.20 (1), p.63-72 |
issn | 1539-2791 1559-0089 |
language | eng |
recordid | cdi_proquest_miscellaneous_2507150071 |
source | Springer Nature |
subjects | Aged Aging Algorithms Alzheimer's disease Amygdala Atrophy Automation Big Data Bioinformatics Biomedical and Life Sciences Biomedicine Brain - diagnostic imaging Brain - pathology Brain research Comparative analysis Computational Biology/Bioinformatics Computer Appl. in Life Sciences Datasets Dementia Globus pallidus Humans Image processing Image Processing, Computer-Assisted - methods Longitudinal studies Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Morphology Neuroimaging Neuroimaging - methods Neurology Neurosciences Nucleus accumbens Older people Original Article Putamen Segmentation Software Thalamus |
title | A Comparative Analysis of MRI Automated Segmentation of Subcortical Brain Volumes in a Large Dataset of Elderly Subjects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparative%20Analysis%20of%20MRI%20Automated%20Segmentation%20of%20Subcortical%20Brain%20Volumes%20in%20a%20Large%20Dataset%20of%20Elderly%20Subjects&rft.jtitle=Neuroinformatics%20(Totowa,%20N.J.)&rft.au=Gomez-Ramirez,%20Jaime&rft.date=2022&rft.volume=20&rft.issue=1&rft.spage=63&rft.epage=72&rft.pages=63-72&rft.issn=1539-2791&rft.eissn=1559-0089&rft_id=info:doi/10.1007/s12021-021-09520-z&rft_dat=%3Cproquest_cross%3E2721999467%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-77423c3260993f0b488f9d2b6c2dfb755fdebc90e1e9ff842bfa238d284ac1b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2721999467&rft_id=info:pmid/33783668&rfr_iscdi=true |