Loading…

Cascaded Amplifier Nanoreactor for Efficient Photodynamic Therapy

Photodynamic therapy (PDT) utilizes reactive oxygen species (ROS) to treat established diseases and has attracted growing attention in the field of cancer therapy. However, in a tumor microenvironment (TME), the inherent hypoxia and high level of antioxidants severely hamper the efficacy of ROS gene...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-04, Vol.13 (14), p.16075-16083
Main Authors: Dong, Ping, Wang, Wenxiao, Pan, Min, Yu, Wenqian, Liu, Yahua, Shi, Tianhui, Hu, Jialing, Zhou, Yizhuo, Yu, Shuyi, Wang, Fuan, Liu, Xiaoqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photodynamic therapy (PDT) utilizes reactive oxygen species (ROS) to treat established diseases and has attracted growing attention in the field of cancer therapy. However, in a tumor microenvironment (TME), the inherent hypoxia and high level of antioxidants severely hamper the efficacy of ROS generation. Here, we describe a cascaded amplifier nanoreactor based on self-assembled nanofusiforms for persistent oxygenation to amplify ROS levels. The nanofusiform assembly is capable of photothermal and photodynamic treatment and regulation of redox oxidation stress by antioxidant depletion to prevent ROS tolerance. The Pt nanozyme decoration of the nanofusiform enables efficient oxygen supplements via Pt nanozyme-catalyzed decomposition of H2O2 overexpressed in TME and generation of O2. Furthermore, the temperature elevation resulted from the photothermal effect of the nanofusiform increases the catalase-like catalytic activity of the Pt nanozyme for boosted oxygen generation. Thus, such a triple cascade strategy using nanozyme-based nanofusiforms amplifies the ROS level by continuous oxygenation, enhancing the efficacy of PDT in vitro and in vivo. Meanwhile, an in vivo multi-modal imaging including near-infrared fluorescence imaging, photothermal imaging, and magnetic resonance imaging achieves precise tumor diagnosis. The rationally designed nanofusiform acts as an efficient ROS amplifier through multidimension strengthening of continuous oxygenation, providing a potential smart nanodrug for cancer therapy.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c01683