Loading…
SkQR1 Reduces Neurologic Deficit Caused by Rat Brain Compression Ischemia
The protective effect of antioxidant SkQR1 was examined on the model of left-sided compression ischemia in rat sensorimotor cortex. The special tests aimed to determine the neurologic deficit in the limbs and assess performance of the forelimbs showed that a 2.5-min ischemia produced no disturbance...
Saved in:
Published in: | Bulletin of experimental biology and medicine 2021-03, Vol.170 (5), p.590-593 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The protective effect of antioxidant SkQR1 was examined on the model of left-sided compression ischemia in rat sensorimotor cortex. The special tests aimed to determine the neurologic deficit in the limbs and assess performance of the forelimbs showed that a 2.5-min ischemia produced no disturbance in the limb functions on postsurgery days 1, 3, and 7. Elevation of compression time resulted in neurologic deficit in animals, and its severity depended on this time. A single intravenous injection of SkQR1 (250 nmol/kg body weight) performed 30 min after ischemia significantly reduced the degree of neurologic deficit.
In vitro
model of ischemia in surviving rat hippocampal slices showed that a 15-min-long ischemia significantly inhibited the population excitatory postsynaptic potentials, which did not restore during reperfusion. Preincubation of the slices with SkQR1 did not significantly affect recovery of these potentials. |
---|---|
ISSN: | 0007-4888 1573-8221 |
DOI: | 10.1007/s10517-021-05112-8 |