Loading…

Comparative genomic and secretomic characterisation of endophytic Bacillus velezensis LC1 producing bioethanol from bamboo lignocellulose

Bacillus is an excellent organic matter degrader, and it has exhibited various abilities required for lignocellulose degradation. Several B. velezensis strains encode lignocellulosases, however their ability to efficiently transform biomass has not been appreciated. In the present study, through the...

Full description

Saved in:
Bibliographic Details
Published in:Archives of microbiology 2021-08, Vol.203 (6), p.3089-3099
Main Authors: Tang, Hao, Zheng, Li, Li, Yuanqiu, Lei, Lu, Yang, Xiaowen, Luo, Chaobing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bacillus is an excellent organic matter degrader, and it has exhibited various abilities required for lignocellulose degradation. Several B. velezensis strains encode lignocellulosases, however their ability to efficiently transform biomass has not been appreciated. In the present study, through the comparative genomic analysis of the whole genome sequences of 21 B. velezensis strains, CAZyome related to lignocellulose degradation was identified and their similarities and differences were compared. Subsequently, the secretome of B. velezensis LC1 by liquid chromatography-tandem mass spectrometry (LC–MS/MS) were identified and confirmed that a considerable number of proteins were involved in lignocellulose degradation. Moreover, after 6-day treatment, the degradation efficiency of the B. velezensis LC1 toward cellulose, hemicellulose and lignin were 59.90%, 75.44% and 23.41%, respectively, the hydrolysate was subjected to ethanol fermentation with Saccharomyces cerevisiae and Escherichia coli KO11, yielded 10.44 g/L ethanol after 96 h. These results indicate that B. velezensis LC1 has the ability to effectively degrade bamboo lignocellulose and has the potential to be used in bioethanol production.
ISSN:0302-8933
1432-072X
DOI:10.1007/s00203-021-02306-6