Loading…

Four Postulates of Quantum Mechanics Are Three

The tensor product postulate of quantum mechanics states that the Hilbert space of a composite system is the tensor product of the components' Hilbert spaces. All current formalizations of quantum mechanics that do not contain this postulate contain some equivalent postulate or assumption (some...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2021-03, Vol.126 (11), p.110402-110402, Article 110402
Main Authors: Carcassi, Gabriele, Maccone, Lorenzo, Aidala, Christine A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-a274407532626ef6aac7a90efad7211a92ef254287554b4196163f8273bbcd583
cites cdi_FETCH-LOGICAL-c375t-a274407532626ef6aac7a90efad7211a92ef254287554b4196163f8273bbcd583
container_end_page 110402
container_issue 11
container_start_page 110402
container_title Physical review letters
container_volume 126
creator Carcassi, Gabriele
Maccone, Lorenzo
Aidala, Christine A
description The tensor product postulate of quantum mechanics states that the Hilbert space of a composite system is the tensor product of the components' Hilbert spaces. All current formalizations of quantum mechanics that do not contain this postulate contain some equivalent postulate or assumption (sometimes hidden). Here we give a natural definition of a composite system as a set containing the component systems and show how one can logically derive the tensor product rule from the state postulate and from the measurement postulate. In other words, our Letter reduces by one the number of postulates necessary to quantum mechanics.
doi_str_mv 10.1103/PhysRevLett.126.110402
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2508580735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504381862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-a274407532626ef6aac7a90efad7211a92ef254287554b4196163f8273bbcd583</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-hRLw4iV19ntzLMWqULFKPS-bdEJb8lF3E6H_3oRWEU8Dw_O-zDyEjClMKAV-v9wcwjt-LbBpJpSpfimAnZEhBZ3EmlJxToYAnMYJgB6QqxB2ANCh5pIMONeJ4UoNyWRetz5a1qFpC9dgiOo8emtd1bRl9ILZxlXbLERTj9Fq4xGvyUXuioA3pzkiH_OH1ewpXrw-Ps-mizjjWjaxY1oI0JIzxRTmyrlMuwQwd2vNKHUJw5xJwYyWUqSCJooqnhumeZpma2n4iNwde_e-_mwxNLbchgyLwlVYt8EyCUYa0Fx26O0_dNe9VHXX9ZTghhrFOkodqczXIXjM7d5vS-cPloLtjdo_Rm2nyR6NdsHxqb5NS1z_xn4U8m8Dz3Gt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504381862</pqid></control><display><type>article</type><title>Four Postulates of Quantum Mechanics Are Three</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Carcassi, Gabriele ; Maccone, Lorenzo ; Aidala, Christine A</creator><creatorcontrib>Carcassi, Gabriele ; Maccone, Lorenzo ; Aidala, Christine A</creatorcontrib><description>The tensor product postulate of quantum mechanics states that the Hilbert space of a composite system is the tensor product of the components' Hilbert spaces. All current formalizations of quantum mechanics that do not contain this postulate contain some equivalent postulate or assumption (sometimes hidden). Here we give a natural definition of a composite system as a set containing the component systems and show how one can logically derive the tensor product rule from the state postulate and from the measurement postulate. In other words, our Letter reduces by one the number of postulates necessary to quantum mechanics.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.126.110402</identifier><identifier>PMID: 33798366</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Hilbert space ; Mathematical analysis ; Quantum mechanics ; Quantum physics ; Tensors</subject><ispartof>Physical review letters, 2021-03, Vol.126 (11), p.110402-110402, Article 110402</ispartof><rights>Copyright American Physical Society Mar 19, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-a274407532626ef6aac7a90efad7211a92ef254287554b4196163f8273bbcd583</citedby><cites>FETCH-LOGICAL-c375t-a274407532626ef6aac7a90efad7211a92ef254287554b4196163f8273bbcd583</cites><orcidid>0000-0001-9540-4988 ; 0000-0002-1071-6251 ; 0000-0002-6729-5312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33798366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carcassi, Gabriele</creatorcontrib><creatorcontrib>Maccone, Lorenzo</creatorcontrib><creatorcontrib>Aidala, Christine A</creatorcontrib><title>Four Postulates of Quantum Mechanics Are Three</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The tensor product postulate of quantum mechanics states that the Hilbert space of a composite system is the tensor product of the components' Hilbert spaces. All current formalizations of quantum mechanics that do not contain this postulate contain some equivalent postulate or assumption (sometimes hidden). Here we give a natural definition of a composite system as a set containing the component systems and show how one can logically derive the tensor product rule from the state postulate and from the measurement postulate. In other words, our Letter reduces by one the number of postulates necessary to quantum mechanics.</description><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Tensors</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3-hRLw4iV19ntzLMWqULFKPS-bdEJb8lF3E6H_3oRWEU8Dw_O-zDyEjClMKAV-v9wcwjt-LbBpJpSpfimAnZEhBZ3EmlJxToYAnMYJgB6QqxB2ANCh5pIMONeJ4UoNyWRetz5a1qFpC9dgiOo8emtd1bRl9ILZxlXbLERTj9Fq4xGvyUXuioA3pzkiH_OH1ewpXrw-Ps-mizjjWjaxY1oI0JIzxRTmyrlMuwQwd2vNKHUJw5xJwYyWUqSCJooqnhumeZpma2n4iNwde_e-_mwxNLbchgyLwlVYt8EyCUYa0Fx26O0_dNe9VHXX9ZTghhrFOkodqczXIXjM7d5vS-cPloLtjdo_Rm2nyR6NdsHxqb5NS1z_xn4U8m8Dz3Gt</recordid><startdate>20210319</startdate><enddate>20210319</enddate><creator>Carcassi, Gabriele</creator><creator>Maccone, Lorenzo</creator><creator>Aidala, Christine A</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9540-4988</orcidid><orcidid>https://orcid.org/0000-0002-1071-6251</orcidid><orcidid>https://orcid.org/0000-0002-6729-5312</orcidid></search><sort><creationdate>20210319</creationdate><title>Four Postulates of Quantum Mechanics Are Three</title><author>Carcassi, Gabriele ; Maccone, Lorenzo ; Aidala, Christine A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-a274407532626ef6aac7a90efad7211a92ef254287554b4196163f8273bbcd583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carcassi, Gabriele</creatorcontrib><creatorcontrib>Maccone, Lorenzo</creatorcontrib><creatorcontrib>Aidala, Christine A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carcassi, Gabriele</au><au>Maccone, Lorenzo</au><au>Aidala, Christine A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four Postulates of Quantum Mechanics Are Three</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2021-03-19</date><risdate>2021</risdate><volume>126</volume><issue>11</issue><spage>110402</spage><epage>110402</epage><pages>110402-110402</pages><artnum>110402</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The tensor product postulate of quantum mechanics states that the Hilbert space of a composite system is the tensor product of the components' Hilbert spaces. All current formalizations of quantum mechanics that do not contain this postulate contain some equivalent postulate or assumption (sometimes hidden). Here we give a natural definition of a composite system as a set containing the component systems and show how one can logically derive the tensor product rule from the state postulate and from the measurement postulate. In other words, our Letter reduces by one the number of postulates necessary to quantum mechanics.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>33798366</pmid><doi>10.1103/PhysRevLett.126.110402</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9540-4988</orcidid><orcidid>https://orcid.org/0000-0002-1071-6251</orcidid><orcidid>https://orcid.org/0000-0002-6729-5312</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-03, Vol.126 (11), p.110402-110402, Article 110402
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2508580735
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Hilbert space
Mathematical analysis
Quantum mechanics
Quantum physics
Tensors
title Four Postulates of Quantum Mechanics Are Three
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four%20Postulates%20of%20Quantum%20Mechanics%20Are%20Three&rft.jtitle=Physical%20review%20letters&rft.au=Carcassi,%20Gabriele&rft.date=2021-03-19&rft.volume=126&rft.issue=11&rft.spage=110402&rft.epage=110402&rft.pages=110402-110402&rft.artnum=110402&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.126.110402&rft_dat=%3Cproquest_cross%3E2504381862%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-a274407532626ef6aac7a90efad7211a92ef254287554b4196163f8273bbcd583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2504381862&rft_id=info:pmid/33798366&rfr_iscdi=true