Loading…
Four Postulates of Quantum Mechanics Are Three
The tensor product postulate of quantum mechanics states that the Hilbert space of a composite system is the tensor product of the components' Hilbert spaces. All current formalizations of quantum mechanics that do not contain this postulate contain some equivalent postulate or assumption (some...
Saved in:
Published in: | Physical review letters 2021-03, Vol.126 (11), p.110402-110402, Article 110402 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-a274407532626ef6aac7a90efad7211a92ef254287554b4196163f8273bbcd583 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-a274407532626ef6aac7a90efad7211a92ef254287554b4196163f8273bbcd583 |
container_end_page | 110402 |
container_issue | 11 |
container_start_page | 110402 |
container_title | Physical review letters |
container_volume | 126 |
creator | Carcassi, Gabriele Maccone, Lorenzo Aidala, Christine A |
description | The tensor product postulate of quantum mechanics states that the Hilbert space of a composite system is the tensor product of the components' Hilbert spaces. All current formalizations of quantum mechanics that do not contain this postulate contain some equivalent postulate or assumption (sometimes hidden). Here we give a natural definition of a composite system as a set containing the component systems and show how one can logically derive the tensor product rule from the state postulate and from the measurement postulate. In other words, our Letter reduces by one the number of postulates necessary to quantum mechanics. |
doi_str_mv | 10.1103/PhysRevLett.126.110402 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2508580735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504381862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-a274407532626ef6aac7a90efad7211a92ef254287554b4196163f8273bbcd583</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-hRLw4iV19ntzLMWqULFKPS-bdEJb8lF3E6H_3oRWEU8Dw_O-zDyEjClMKAV-v9wcwjt-LbBpJpSpfimAnZEhBZ3EmlJxToYAnMYJgB6QqxB2ANCh5pIMONeJ4UoNyWRetz5a1qFpC9dgiOo8emtd1bRl9ILZxlXbLERTj9Fq4xGvyUXuioA3pzkiH_OH1ewpXrw-Ps-mizjjWjaxY1oI0JIzxRTmyrlMuwQwd2vNKHUJw5xJwYyWUqSCJooqnhumeZpma2n4iNwde_e-_mwxNLbchgyLwlVYt8EyCUYa0Fx26O0_dNe9VHXX9ZTghhrFOkodqczXIXjM7d5vS-cPloLtjdo_Rm2nyR6NdsHxqb5NS1z_xn4U8m8Dz3Gt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504381862</pqid></control><display><type>article</type><title>Four Postulates of Quantum Mechanics Are Three</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Carcassi, Gabriele ; Maccone, Lorenzo ; Aidala, Christine A</creator><creatorcontrib>Carcassi, Gabriele ; Maccone, Lorenzo ; Aidala, Christine A</creatorcontrib><description>The tensor product postulate of quantum mechanics states that the Hilbert space of a composite system is the tensor product of the components' Hilbert spaces. All current formalizations of quantum mechanics that do not contain this postulate contain some equivalent postulate or assumption (sometimes hidden). Here we give a natural definition of a composite system as a set containing the component systems and show how one can logically derive the tensor product rule from the state postulate and from the measurement postulate. In other words, our Letter reduces by one the number of postulates necessary to quantum mechanics.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.126.110402</identifier><identifier>PMID: 33798366</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Hilbert space ; Mathematical analysis ; Quantum mechanics ; Quantum physics ; Tensors</subject><ispartof>Physical review letters, 2021-03, Vol.126 (11), p.110402-110402, Article 110402</ispartof><rights>Copyright American Physical Society Mar 19, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-a274407532626ef6aac7a90efad7211a92ef254287554b4196163f8273bbcd583</citedby><cites>FETCH-LOGICAL-c375t-a274407532626ef6aac7a90efad7211a92ef254287554b4196163f8273bbcd583</cites><orcidid>0000-0001-9540-4988 ; 0000-0002-1071-6251 ; 0000-0002-6729-5312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33798366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carcassi, Gabriele</creatorcontrib><creatorcontrib>Maccone, Lorenzo</creatorcontrib><creatorcontrib>Aidala, Christine A</creatorcontrib><title>Four Postulates of Quantum Mechanics Are Three</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The tensor product postulate of quantum mechanics states that the Hilbert space of a composite system is the tensor product of the components' Hilbert spaces. All current formalizations of quantum mechanics that do not contain this postulate contain some equivalent postulate or assumption (sometimes hidden). Here we give a natural definition of a composite system as a set containing the component systems and show how one can logically derive the tensor product rule from the state postulate and from the measurement postulate. In other words, our Letter reduces by one the number of postulates necessary to quantum mechanics.</description><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Tensors</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3-hRLw4iV19ntzLMWqULFKPS-bdEJb8lF3E6H_3oRWEU8Dw_O-zDyEjClMKAV-v9wcwjt-LbBpJpSpfimAnZEhBZ3EmlJxToYAnMYJgB6QqxB2ANCh5pIMONeJ4UoNyWRetz5a1qFpC9dgiOo8emtd1bRl9ILZxlXbLERTj9Fq4xGvyUXuioA3pzkiH_OH1ewpXrw-Ps-mizjjWjaxY1oI0JIzxRTmyrlMuwQwd2vNKHUJw5xJwYyWUqSCJooqnhumeZpma2n4iNwde_e-_mwxNLbchgyLwlVYt8EyCUYa0Fx26O0_dNe9VHXX9ZTghhrFOkodqczXIXjM7d5vS-cPloLtjdo_Rm2nyR6NdsHxqb5NS1z_xn4U8m8Dz3Gt</recordid><startdate>20210319</startdate><enddate>20210319</enddate><creator>Carcassi, Gabriele</creator><creator>Maccone, Lorenzo</creator><creator>Aidala, Christine A</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9540-4988</orcidid><orcidid>https://orcid.org/0000-0002-1071-6251</orcidid><orcidid>https://orcid.org/0000-0002-6729-5312</orcidid></search><sort><creationdate>20210319</creationdate><title>Four Postulates of Quantum Mechanics Are Three</title><author>Carcassi, Gabriele ; Maccone, Lorenzo ; Aidala, Christine A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-a274407532626ef6aac7a90efad7211a92ef254287554b4196163f8273bbcd583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carcassi, Gabriele</creatorcontrib><creatorcontrib>Maccone, Lorenzo</creatorcontrib><creatorcontrib>Aidala, Christine A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carcassi, Gabriele</au><au>Maccone, Lorenzo</au><au>Aidala, Christine A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four Postulates of Quantum Mechanics Are Three</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2021-03-19</date><risdate>2021</risdate><volume>126</volume><issue>11</issue><spage>110402</spage><epage>110402</epage><pages>110402-110402</pages><artnum>110402</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The tensor product postulate of quantum mechanics states that the Hilbert space of a composite system is the tensor product of the components' Hilbert spaces. All current formalizations of quantum mechanics that do not contain this postulate contain some equivalent postulate or assumption (sometimes hidden). Here we give a natural definition of a composite system as a set containing the component systems and show how one can logically derive the tensor product rule from the state postulate and from the measurement postulate. In other words, our Letter reduces by one the number of postulates necessary to quantum mechanics.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>33798366</pmid><doi>10.1103/PhysRevLett.126.110402</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9540-4988</orcidid><orcidid>https://orcid.org/0000-0002-1071-6251</orcidid><orcidid>https://orcid.org/0000-0002-6729-5312</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2021-03, Vol.126 (11), p.110402-110402, Article 110402 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2508580735 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Hilbert space Mathematical analysis Quantum mechanics Quantum physics Tensors |
title | Four Postulates of Quantum Mechanics Are Three |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four%20Postulates%20of%20Quantum%20Mechanics%20Are%20Three&rft.jtitle=Physical%20review%20letters&rft.au=Carcassi,%20Gabriele&rft.date=2021-03-19&rft.volume=126&rft.issue=11&rft.spage=110402&rft.epage=110402&rft.pages=110402-110402&rft.artnum=110402&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.126.110402&rft_dat=%3Cproquest_cross%3E2504381862%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-a274407532626ef6aac7a90efad7211a92ef254287554b4196163f8273bbcd583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2504381862&rft_id=info:pmid/33798366&rfr_iscdi=true |