Loading…
Partial magic angle spinning NMR 1H, 13C, 15N resonance assignments of the flexible regions of a monomeric alpha-synuclein: conformation of C-terminus in the lipid-bound and amyloid fibril states
Alpha-synuclein (α-syn) is a small presynaptic protein that is believed to play an important role in the pathogenesis of Parkinson's disease (PD). It localizes to presynaptic terminals where it partitions between a cytosolic soluble and a lipid-bound state. Recent evidence suggests that α-syn c...
Saved in:
Published in: | Biomolecular NMR assignments 2021-10, Vol.15 (2), p.297-303 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alpha-synuclein (α-syn) is a small presynaptic protein that is believed to play an important role in the pathogenesis of Parkinson's disease (PD). It localizes to presynaptic terminals where it partitions between a cytosolic soluble and a lipid-bound state. Recent evidence suggests that α-syn can also associate with mitochondrial membranes where it interacts with a unique anionic phospholipid cardiolipin (CL). Here, we examine the conformation of the flexible fragments of a monomeric α-syn bound to lipid vesicles composed of anionic 1,2-dioleoyl-
sn
-glycero-3-phosphate (DOPA) and 1,2-dioleoyl-
sn
-glycero-3-phosphocholine (DOPC) lipids, of tetraoleoyl CL (TOCL) and DOPC, and of fibrils. The dynamic properties of α-syn associated with DOPA:DOPC vesicles were the most favorable for conducting three-dimensional NMR experiments, and the
13
C,
15
N and amide
1
H chemical shifts of the flexible and disordered C-terminus of α-syn could be assigned using three-dimensional through-bond magic angle spinning NMR spectroscopy. Although the C-terminus is more dynamically constrained in fibrils and in α-syn bound to TOCL:DOPC vesicles, a direct comparison of carbon chemical shifts detected using through bond two-dimensional spectroscopy indicates that the C-terminus is flexible and unstructured in all the three samples. |
---|---|
ISSN: | 1874-2718 1874-270X 1874-270X |
DOI: | 10.1007/s12104-021-10020-z |