Loading…

Resistive Switching of the Tetraindolyl Derivative in Ultrathin Films: A Potential Candidate for Nonvolatile Memory Applications

Bipolar resistive switching using organic molecule is very promising for memory applications owing to their advantages, such as simple device structure, low manufacturing cost, stability, and flexibility. Herein we report Langmuir–Blodgett (LB) and spin-coated-film-based bipolar resistive switching...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2021-04, Vol.37 (15), p.4449-4459
Main Authors: Sarkar, Surajit, Banik, Hritinava, Suklabaidya, Sudip, Deb, Barnali, Majumdar, Swapan, Paul, Pabitra Kumar, Bhattacharjee, Debajyoti, Hussain, Syed Arshad
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-19ffe58a955022395d800c6bec82edfc25619a0f030bbbeb14fe2ac7adff6ce3
cites cdi_FETCH-LOGICAL-a348t-19ffe58a955022395d800c6bec82edfc25619a0f030bbbeb14fe2ac7adff6ce3
container_end_page 4459
container_issue 15
container_start_page 4449
container_title Langmuir
container_volume 37
creator Sarkar, Surajit
Banik, Hritinava
Suklabaidya, Sudip
Deb, Barnali
Majumdar, Swapan
Paul, Pabitra Kumar
Bhattacharjee, Debajyoti
Hussain, Syed Arshad
description Bipolar resistive switching using organic molecule is very promising for memory applications owing to their advantages, such as simple device structure, low manufacturing cost, stability, and flexibility. Herein we report Langmuir–Blodgett (LB) and spin-coated-film-based bipolar resistive switching devices using organic material 1,4-bis­(di­(1H-indol-3-yl)­methyl)­benzene (Indole1). The pressure–area per molecule isotherm (π–A), Brewster angle microscopy (BAM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to formulate an idea about the organization and morphology of the organic material onto thin films. On the basis of the device structure and measurement protocol, it is observed that the device made up of Indole1 shows nonvolatile resistive random access memory (RRAM) behavior with a very high memory window (∼106), data sustainability (5400 s), device yield (86.7%), and repeatability. The oxidation–reduction process and electric-field-driven conduction are the keys behind such switching behavior. Because of very good data retention, repeatability, stability, and a high device yield, the switching device designed using compound Indole1 may be a potential candidate for memory applications.
doi_str_mv 10.1021/acs.langmuir.0c03629
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2509266528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509266528</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-19ffe58a955022395d800c6bec82edfc25619a0f030bbbeb14fe2ac7adff6ce3</originalsourceid><addsrcrecordid>eNp9kE1vEzEQhi0EomnhHyDkI5cNY3u92eUWpZQilQ9BOK-83nHrymsH2xuUGz8dl6QcOY0087wzmoeQVwyWDDh7q3RaOuVvp9nGJWgQDe-ekAWTHCrZ8tVTsoBVLapV3Ygzcp7SPQB0ou6ekzMhWs4aKRfk9zdMNmW7R_r9l836zvpbGgzNd0i3mKOyfgzu4OglRrtXf0Hr6Q9XRrnA9Mq6Kb2ja_o1ZPTZKkc3yo92VBmpCZF-Dn4fXEk6pJ9wCvFA17uds7q0gk8vyDOjXMKXp3pBtlfvt5vr6ubLh4-b9U2lRN3minXGoGxVJyVwLjo5tgC6GVC3HEejuWxYp8CAgGEYcGC1Qa70So3GNBrFBXlzXLuL4eeMKfeTTRpdMYhhTj2X0PGmkbwtaH1EdQwpRTT9LtpJxUPPoH9Q3xf1_aP6_qS-xF6fLszDhOO_0KPrAsAReIjfhzn68u__d_4B_P2XEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509266528</pqid></control><display><type>article</type><title>Resistive Switching of the Tetraindolyl Derivative in Ultrathin Films: A Potential Candidate for Nonvolatile Memory Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Sarkar, Surajit ; Banik, Hritinava ; Suklabaidya, Sudip ; Deb, Barnali ; Majumdar, Swapan ; Paul, Pabitra Kumar ; Bhattacharjee, Debajyoti ; Hussain, Syed Arshad</creator><creatorcontrib>Sarkar, Surajit ; Banik, Hritinava ; Suklabaidya, Sudip ; Deb, Barnali ; Majumdar, Swapan ; Paul, Pabitra Kumar ; Bhattacharjee, Debajyoti ; Hussain, Syed Arshad</creatorcontrib><description>Bipolar resistive switching using organic molecule is very promising for memory applications owing to their advantages, such as simple device structure, low manufacturing cost, stability, and flexibility. Herein we report Langmuir–Blodgett (LB) and spin-coated-film-based bipolar resistive switching devices using organic material 1,4-bis­(di­(1H-indol-3-yl)­methyl)­benzene (Indole1). The pressure–area per molecule isotherm (π–A), Brewster angle microscopy (BAM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to formulate an idea about the organization and morphology of the organic material onto thin films. On the basis of the device structure and measurement protocol, it is observed that the device made up of Indole1 shows nonvolatile resistive random access memory (RRAM) behavior with a very high memory window (∼106), data sustainability (5400 s), device yield (86.7%), and repeatability. The oxidation–reduction process and electric-field-driven conduction are the keys behind such switching behavior. Because of very good data retention, repeatability, stability, and a high device yield, the switching device designed using compound Indole1 may be a potential candidate for memory applications.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.0c03629</identifier><identifier>PMID: 33821655</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2021-04, Vol.37 (15), p.4449-4459</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-19ffe58a955022395d800c6bec82edfc25619a0f030bbbeb14fe2ac7adff6ce3</citedby><cites>FETCH-LOGICAL-a348t-19ffe58a955022395d800c6bec82edfc25619a0f030bbbeb14fe2ac7adff6ce3</cites><orcidid>0000-0002-3490-525X ; 0000-0002-3298-6260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33821655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarkar, Surajit</creatorcontrib><creatorcontrib>Banik, Hritinava</creatorcontrib><creatorcontrib>Suklabaidya, Sudip</creatorcontrib><creatorcontrib>Deb, Barnali</creatorcontrib><creatorcontrib>Majumdar, Swapan</creatorcontrib><creatorcontrib>Paul, Pabitra Kumar</creatorcontrib><creatorcontrib>Bhattacharjee, Debajyoti</creatorcontrib><creatorcontrib>Hussain, Syed Arshad</creatorcontrib><title>Resistive Switching of the Tetraindolyl Derivative in Ultrathin Films: A Potential Candidate for Nonvolatile Memory Applications</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Bipolar resistive switching using organic molecule is very promising for memory applications owing to their advantages, such as simple device structure, low manufacturing cost, stability, and flexibility. Herein we report Langmuir–Blodgett (LB) and spin-coated-film-based bipolar resistive switching devices using organic material 1,4-bis­(di­(1H-indol-3-yl)­methyl)­benzene (Indole1). The pressure–area per molecule isotherm (π–A), Brewster angle microscopy (BAM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to formulate an idea about the organization and morphology of the organic material onto thin films. On the basis of the device structure and measurement protocol, it is observed that the device made up of Indole1 shows nonvolatile resistive random access memory (RRAM) behavior with a very high memory window (∼106), data sustainability (5400 s), device yield (86.7%), and repeatability. The oxidation–reduction process and electric-field-driven conduction are the keys behind such switching behavior. Because of very good data retention, repeatability, stability, and a high device yield, the switching device designed using compound Indole1 may be a potential candidate for memory applications.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1vEzEQhi0EomnhHyDkI5cNY3u92eUWpZQilQ9BOK-83nHrymsH2xuUGz8dl6QcOY0087wzmoeQVwyWDDh7q3RaOuVvp9nGJWgQDe-ekAWTHCrZ8tVTsoBVLapV3Ygzcp7SPQB0ou6ekzMhWs4aKRfk9zdMNmW7R_r9l836zvpbGgzNd0i3mKOyfgzu4OglRrtXf0Hr6Q9XRrnA9Mq6Kb2ja_o1ZPTZKkc3yo92VBmpCZF-Dn4fXEk6pJ9wCvFA17uds7q0gk8vyDOjXMKXp3pBtlfvt5vr6ubLh4-b9U2lRN3minXGoGxVJyVwLjo5tgC6GVC3HEejuWxYp8CAgGEYcGC1Qa70So3GNBrFBXlzXLuL4eeMKfeTTRpdMYhhTj2X0PGmkbwtaH1EdQwpRTT9LtpJxUPPoH9Q3xf1_aP6_qS-xF6fLszDhOO_0KPrAsAReIjfhzn68u__d_4B_P2XEA</recordid><startdate>20210420</startdate><enddate>20210420</enddate><creator>Sarkar, Surajit</creator><creator>Banik, Hritinava</creator><creator>Suklabaidya, Sudip</creator><creator>Deb, Barnali</creator><creator>Majumdar, Swapan</creator><creator>Paul, Pabitra Kumar</creator><creator>Bhattacharjee, Debajyoti</creator><creator>Hussain, Syed Arshad</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3490-525X</orcidid><orcidid>https://orcid.org/0000-0002-3298-6260</orcidid></search><sort><creationdate>20210420</creationdate><title>Resistive Switching of the Tetraindolyl Derivative in Ultrathin Films: A Potential Candidate for Nonvolatile Memory Applications</title><author>Sarkar, Surajit ; Banik, Hritinava ; Suklabaidya, Sudip ; Deb, Barnali ; Majumdar, Swapan ; Paul, Pabitra Kumar ; Bhattacharjee, Debajyoti ; Hussain, Syed Arshad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-19ffe58a955022395d800c6bec82edfc25619a0f030bbbeb14fe2ac7adff6ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Surajit</creatorcontrib><creatorcontrib>Banik, Hritinava</creatorcontrib><creatorcontrib>Suklabaidya, Sudip</creatorcontrib><creatorcontrib>Deb, Barnali</creatorcontrib><creatorcontrib>Majumdar, Swapan</creatorcontrib><creatorcontrib>Paul, Pabitra Kumar</creatorcontrib><creatorcontrib>Bhattacharjee, Debajyoti</creatorcontrib><creatorcontrib>Hussain, Syed Arshad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Surajit</au><au>Banik, Hritinava</au><au>Suklabaidya, Sudip</au><au>Deb, Barnali</au><au>Majumdar, Swapan</au><au>Paul, Pabitra Kumar</au><au>Bhattacharjee, Debajyoti</au><au>Hussain, Syed Arshad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resistive Switching of the Tetraindolyl Derivative in Ultrathin Films: A Potential Candidate for Nonvolatile Memory Applications</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2021-04-20</date><risdate>2021</risdate><volume>37</volume><issue>15</issue><spage>4449</spage><epage>4459</epage><pages>4449-4459</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Bipolar resistive switching using organic molecule is very promising for memory applications owing to their advantages, such as simple device structure, low manufacturing cost, stability, and flexibility. Herein we report Langmuir–Blodgett (LB) and spin-coated-film-based bipolar resistive switching devices using organic material 1,4-bis­(di­(1H-indol-3-yl)­methyl)­benzene (Indole1). The pressure–area per molecule isotherm (π–A), Brewster angle microscopy (BAM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to formulate an idea about the organization and morphology of the organic material onto thin films. On the basis of the device structure and measurement protocol, it is observed that the device made up of Indole1 shows nonvolatile resistive random access memory (RRAM) behavior with a very high memory window (∼106), data sustainability (5400 s), device yield (86.7%), and repeatability. The oxidation–reduction process and electric-field-driven conduction are the keys behind such switching behavior. Because of very good data retention, repeatability, stability, and a high device yield, the switching device designed using compound Indole1 may be a potential candidate for memory applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33821655</pmid><doi>10.1021/acs.langmuir.0c03629</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3490-525X</orcidid><orcidid>https://orcid.org/0000-0002-3298-6260</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2021-04, Vol.37 (15), p.4449-4459
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2509266528
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Resistive Switching of the Tetraindolyl Derivative in Ultrathin Films: A Potential Candidate for Nonvolatile Memory Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resistive%20Switching%20of%20the%20Tetraindolyl%20Derivative%20in%20Ultrathin%20Films:%20A%20Potential%20Candidate%20for%20Nonvolatile%20Memory%20Applications&rft.jtitle=Langmuir&rft.au=Sarkar,%20Surajit&rft.date=2021-04-20&rft.volume=37&rft.issue=15&rft.spage=4449&rft.epage=4459&rft.pages=4449-4459&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.0c03629&rft_dat=%3Cproquest_cross%3E2509266528%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-19ffe58a955022395d800c6bec82edfc25619a0f030bbbeb14fe2ac7adff6ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509266528&rft_id=info:pmid/33821655&rfr_iscdi=true