Loading…
Modeling of surface-induced second-harmonic generation from multilayer structures by the transfer matrix method
We analytically and numerically investigate surface second-harmonic generation (SHG) from a stack of dielectric layers. We develop a theoretical formalism based on the transfer matrix method for the calculation of the surface-driven second-harmonic radiation from multilayer structures and elaborate...
Saved in:
Published in: | Optics express 2021-03, Vol.29 (6), p.9098-9122 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We analytically and numerically investigate surface second-harmonic generation (SHG) from a stack of dielectric layers. We develop a theoretical formalism based on the transfer matrix method for the calculation of the surface-driven second-harmonic radiation from multilayer structures and elaborate it for the case of ultrathin dielectric layers using a power series expansion to derive the effective surface nonlinear tensor for the whole stack. We show that for deeply subwavelength thicknesses of the layers the surface responses from all interfaces can efficiently sum up, leading to largely enhanced efficiency of SHG. As a result, such surface-driven nonlinearity can become comparable to the bulk nonlinearity in noncentrosymmetric semiconductors and can yield high performance for nonlinear nanophotonic applications. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.417066 |