Loading…
Spatially dependent hyper-Raman scattering in five-level cold atoms
We demonstrate a scheme to control the spatially dependent hyper-Raman scattering based on electromagnetically induced transparency in a cold atomic system. By adjusting the different system parameters, one can effectively modulate the phase and intensity of the generated Raman field. Specifically,...
Saved in:
Published in: | Optics express 2021-03, Vol.29 (7), p.10914-10922 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate a scheme to control the spatially dependent hyper-Raman scattering based on electromagnetically induced transparency in a cold atomic system. By adjusting the different system parameters, one can effectively modulate the phase and intensity of the generated Raman field. Specifically, we show that electromagnetically induced transparency creates quantum interference, which results in greatly enhanced efficiency for the generated Raman field. Such improvement in Raman efficiency makes our scheme suitable for generation of short-wavelength coherent radiation, conversion of frequency, and nonlinear spectroscopy based on orbital angular momentum light. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.420015 |