Loading…
CoCoNet: an efficient deep learning tool for viral metagenome binning
Metagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes. Assembly is one of the most critical steps in metagenomics experiments. It consists of transforming overlapping DNA sequencing reads into su...
Saved in:
Published in: | Bioinformatics (Oxford, England) England), 2021-09, Vol.37 (18), p.2803-2810 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes. Assembly is one of the most critical steps in metagenomics experiments. It consists of transforming overlapping DNA sequencing reads into sufficiently accurate representations of the community's genomes. This process is computationally difficult and commonly results in genomes fragmented across many contigs. Computational binning methods are used to mitigate fragmentation by partitioning contigs based on their sequence composition, abundance or chromosome organization into bins representing the community's genomes. Existing binning methods have been principally tuned for bacterial genomes and do not perform favorably on viral metagenomes.
We propose Composition and Coverage Network (CoCoNet), a new binning method for viral metagenomes that leverages the flexibility and the effectiveness of deep learning to model the co-occurrence of contigs belonging to the same viral genome and provide a rigorous framework for binning viral contigs. Our results show that CoCoNet substantially outperforms existing binning methods on viral datasets.
CoCoNet was implemented in Python and is available for download on PyPi (https://pypi.org/). The source code is hosted on GitHub at https://github.com/Puumanamana/CoCoNet and the documentation is available at https://coconet.readthedocs.io/en/latest/index.html. CoCoNet does not require extensive resources to run. For example, binning 100k contigs took about 4 h on 10 Intel CPU Cores (2.4 GHz), with a memory peak at 27 GB (see Supplementary Fig. S9). To process a large dataset, CoCoNet may need to be run on a high RAM capacity server. Such servers are typically available in high-performance or cloud computing settings.
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1367-4811 |
DOI: | 10.1093/bioinformatics/btab213 |