Loading…

Vibrationally Resolved Absorption Spectra and Exciton Dynamics in Zinc Phthalocyanine Aggregates: Effects of Aggregation Lengths and Remote Exciton Transfer

The vibrationally resolved absorption spectra and exciton dynamics in the α-zinc phthalocyanine aggregates are theoretically investigated by using a non-Markovian stochastic Schrödinger equation. The model Hamiltonian adopted for spectral and dynamic simulations explicitly includes the couplings fo...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2021-04, Vol.125 (14), p.2932-2943
Main Authors: Feng, Shishi, Wang, Yu-Chen, Liang, WanZhen, Zhao, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The vibrationally resolved absorption spectra and exciton dynamics in the α-zinc phthalocyanine aggregates are theoretically investigated by using a non-Markovian stochastic Schrödinger equation. The model Hamiltonian adopted for spectral and dynamic simulations explicitly includes the couplings for both nearest-neighbor and remote exciton transfer, and it is parametrized from first-principles calculations. The results indicate that aggregation lengths and remote exciton transfer significantly influence the relative energy alignment between delocalized Frenkel exciton (FE) and charge transfer (CT) states, which in turn strongly affects the relative intensities of the two absorption peaks in the Q-band region. Analytical formulas are derived to establish quantitative structure–spectra relationships in aggregates, and they offer simple patterns to extract electronic-state properties directly from absorption spectra. The dynamics simulations reveal that the light absorption can directly generate mixed states with both FE and CT features, but it is hard for the photoexcitation from the Q-band region to generate free carriers due to the high energies of charge-separated states.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.1c01271