Loading…
Quantile regression models for survival data with missing censoring indicators
The quantile regression model has increasingly become a useful approach for analyzing survival data due to its easy interpretation and flexibility in exploring the dynamic relationship between a time-to-event outcome and the covariates. In this paper, we consider the quantile regression model for su...
Saved in:
Published in: | Statistical methods in medical research 2021-05, Vol.30 (5), p.1320-1331 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The quantile regression model has increasingly become a useful approach for analyzing survival data due to its easy interpretation and flexibility in exploring the dynamic relationship between a time-to-event outcome and the covariates. In this paper, we consider the quantile regression model for survival data with missing censoring indicators. Based on the augmented inverse probability weighting technique, two weighted estimating equations are developed and corresponding easily implemented algorithms are suggested to solve the estimating equations. Asymptotic properties of the resultant estimators and the resampling-based inference procedures are established. Finally, the finite sample performances of the proposed approaches are investigated in simulation studies and a real data application. |
---|---|
ISSN: | 0962-2802 1477-0334 |
DOI: | 10.1177/0962280221995986 |