Loading…

WEDGE: imputation of gene expression values from single-cell RNA-seq datasets using biased matrix decomposition

The low capture rate of expressed RNAs from single-cell sequencing technology is one of the major obstacles to downstream functional genomics analyses. Recently, a number of imputation methods have emerged for single-cell transcriptome data, however, recovering missing values in very sparse expressi...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in Bioinformatics 2021-04, Vol.22 (5)
Main Authors: Hu, Yinlei, Li, Bin, Zhang, Wen, Liu, Nianping, Cai, Pengfei, Chen, Falai, Qu, Kun
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-91571f7a90d361e4126069e3252038cbfa713b993a1ec0c90f60b6ae3c63f4723
cites cdi_FETCH-LOGICAL-c420t-91571f7a90d361e4126069e3252038cbfa713b993a1ec0c90f60b6ae3c63f4723
container_end_page
container_issue 5
container_start_page
container_title Briefings in Bioinformatics
container_volume 22
creator Hu, Yinlei
Li, Bin
Zhang, Wen
Liu, Nianping
Cai, Pengfei
Chen, Falai
Qu, Kun
description The low capture rate of expressed RNAs from single-cell sequencing technology is one of the major obstacles to downstream functional genomics analyses. Recently, a number of imputation methods have emerged for single-cell transcriptome data, however, recovering missing values in very sparse expression matrices remains a substantial challenge. Here, we propose a new algorithm, WEDGE (WEighted Decomposition of Gene Expression), to impute gene expression matrices by using a biased low-rank matrix decomposition method. WEDGE successfully recovered expression matrices, reproduced the cell-wise and gene-wise correlations and improved the clustering of cells, performing impressively for applications with sparse datasets. Overall, this study shows a potent approach for imputing sparse expression matrix data, and our WEDGE algorithm should help many researchers to more profitably explore the biological meanings embedded in their single-cell RNA sequencing datasets. The source code of WEDGE has been released at https://github.com/QuKunLab/WEDGE.
doi_str_mv 10.1093/bib/bbab085
format article
fullrecord <record><control><sourceid>proquest_COVID</sourceid><recordid>TN_cdi_proquest_miscellaneous_2511247061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510330232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-91571f7a90d361e4126069e3252038cbfa713b993a1ec0c90f60b6ae3c63f4723</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVIababnnIvgl4Cxc1IY0vr3sJmuy2EBEJCjkayx0HBtrySHTb_fWyy7SGn-frxeMxj7EzATwE5XlhnL6w1FlbZEVuIVOskhSw9nnulkyxVeMK-xPgMIEGvxGd2grjCVIJcMP-4udpufnHX9uNgBuc77mv-RB1x2veBYpxXL6YZKfI6-JZH1z01lJTUNPzu5jKJtOOVGUykIfJxvnLrpqnirRmC2_OKSt_2PrpZ_ZR9qk0T6euhLtnD7839-k9yfbv9u768TsrJ15DkItOi1iaHCpWgVEgFKieUmQRclbY2WqDNczSCSihzqBVYZQhLhXWqJS7Z-btuH_xu8j4UrYuzZ9ORH2MhMyFkqkGJCf3-AX32Y-gmdzMFiCBxFvzxTpXBxxioLvrgWhNeCwHFnEMx5VAccpjobwfN0bZU_Wf_PR7fAHtSg6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510330232</pqid></control><display><type>article</type><title>WEDGE: imputation of gene expression values from single-cell RNA-seq datasets using biased matrix decomposition</title><source>Coronavirus Research Database</source><creator>Hu, Yinlei ; Li, Bin ; Zhang, Wen ; Liu, Nianping ; Cai, Pengfei ; Chen, Falai ; Qu, Kun</creator><creatorcontrib>Hu, Yinlei ; Li, Bin ; Zhang, Wen ; Liu, Nianping ; Cai, Pengfei ; Chen, Falai ; Qu, Kun</creatorcontrib><description>The low capture rate of expressed RNAs from single-cell sequencing technology is one of the major obstacles to downstream functional genomics analyses. Recently, a number of imputation methods have emerged for single-cell transcriptome data, however, recovering missing values in very sparse expression matrices remains a substantial challenge. Here, we propose a new algorithm, WEDGE (WEighted Decomposition of Gene Expression), to impute gene expression matrices by using a biased low-rank matrix decomposition method. WEDGE successfully recovered expression matrices, reproduced the cell-wise and gene-wise correlations and improved the clustering of cells, performing impressively for applications with sparse datasets. Overall, this study shows a potent approach for imputing sparse expression matrix data, and our WEDGE algorithm should help many researchers to more profitably explore the biological meanings embedded in their single-cell RNA sequencing datasets. The source code of WEDGE has been released at https://github.com/QuKunLab/WEDGE.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbab085</identifier><identifier>PMID: 33834202</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Briefings in Bioinformatics, 2021-04, Vol.22 (5)</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>2021. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://academic.oup.com/journals/pages/coronavirus .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-91571f7a90d361e4126069e3252038cbfa713b993a1ec0c90f60b6ae3c63f4723</citedby><cites>FETCH-LOGICAL-c420t-91571f7a90d361e4126069e3252038cbfa713b993a1ec0c90f60b6ae3c63f4723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2510330232?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,38497,43876</link.rule.ids><linktorsrc>$$Uhttps://www.proquest.com/docview/2510330232?pq-origsite=primo$$EView_record_in_ProQuest$$FView_record_in_$$GProQuest</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33834202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yinlei</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Liu, Nianping</creatorcontrib><creatorcontrib>Cai, Pengfei</creatorcontrib><creatorcontrib>Chen, Falai</creatorcontrib><creatorcontrib>Qu, Kun</creatorcontrib><title>WEDGE: imputation of gene expression values from single-cell RNA-seq datasets using biased matrix decomposition</title><title>Briefings in Bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>The low capture rate of expressed RNAs from single-cell sequencing technology is one of the major obstacles to downstream functional genomics analyses. Recently, a number of imputation methods have emerged for single-cell transcriptome data, however, recovering missing values in very sparse expression matrices remains a substantial challenge. Here, we propose a new algorithm, WEDGE (WEighted Decomposition of Gene Expression), to impute gene expression matrices by using a biased low-rank matrix decomposition method. WEDGE successfully recovered expression matrices, reproduced the cell-wise and gene-wise correlations and improved the clustering of cells, performing impressively for applications with sparse datasets. Overall, this study shows a potent approach for imputing sparse expression matrix data, and our WEDGE algorithm should help many researchers to more profitably explore the biological meanings embedded in their single-cell RNA sequencing datasets. The source code of WEDGE has been released at https://github.com/QuKunLab/WEDGE.</description><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><recordid>eNpdkc1r3DAQxUVIababnnIvgl4Cxc1IY0vr3sJmuy2EBEJCjkayx0HBtrySHTb_fWyy7SGn-frxeMxj7EzATwE5XlhnL6w1FlbZEVuIVOskhSw9nnulkyxVeMK-xPgMIEGvxGd2grjCVIJcMP-4udpufnHX9uNgBuc77mv-RB1x2veBYpxXL6YZKfI6-JZH1z01lJTUNPzu5jKJtOOVGUykIfJxvnLrpqnirRmC2_OKSt_2PrpZ_ZR9qk0T6euhLtnD7839-k9yfbv9u768TsrJ15DkItOi1iaHCpWgVEgFKieUmQRclbY2WqDNczSCSihzqBVYZQhLhXWqJS7Z-btuH_xu8j4UrYuzZ9ORH2MhMyFkqkGJCf3-AX32Y-gmdzMFiCBxFvzxTpXBxxioLvrgWhNeCwHFnEMx5VAccpjobwfN0bZU_Wf_PR7fAHtSg6k</recordid><startdate>20210408</startdate><enddate>20210408</enddate><creator>Hu, Yinlei</creator><creator>Li, Bin</creator><creator>Zhang, Wen</creator><creator>Liu, Nianping</creator><creator>Cai, Pengfei</creator><creator>Chen, Falai</creator><creator>Qu, Kun</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>COVID</scope><scope>7X8</scope></search><sort><creationdate>20210408</creationdate><title>WEDGE: imputation of gene expression values from single-cell RNA-seq datasets using biased matrix decomposition</title><author>Hu, Yinlei ; Li, Bin ; Zhang, Wen ; Liu, Nianping ; Cai, Pengfei ; Chen, Falai ; Qu, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-91571f7a90d361e4126069e3252038cbfa713b993a1ec0c90f60b6ae3c63f4723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yinlei</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Liu, Nianping</creatorcontrib><creatorcontrib>Cai, Pengfei</creatorcontrib><creatorcontrib>Chen, Falai</creatorcontrib><creatorcontrib>Qu, Kun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Coronavirus Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Yinlei</au><au>Li, Bin</au><au>Zhang, Wen</au><au>Liu, Nianping</au><au>Cai, Pengfei</au><au>Chen, Falai</au><au>Qu, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WEDGE: imputation of gene expression values from single-cell RNA-seq datasets using biased matrix decomposition</atitle><jtitle>Briefings in Bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2021-04-08</date><risdate>2021</risdate><volume>22</volume><issue>5</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>The low capture rate of expressed RNAs from single-cell sequencing technology is one of the major obstacles to downstream functional genomics analyses. Recently, a number of imputation methods have emerged for single-cell transcriptome data, however, recovering missing values in very sparse expression matrices remains a substantial challenge. Here, we propose a new algorithm, WEDGE (WEighted Decomposition of Gene Expression), to impute gene expression matrices by using a biased low-rank matrix decomposition method. WEDGE successfully recovered expression matrices, reproduced the cell-wise and gene-wise correlations and improved the clustering of cells, performing impressively for applications with sparse datasets. Overall, this study shows a potent approach for imputing sparse expression matrix data, and our WEDGE algorithm should help many researchers to more profitably explore the biological meanings embedded in their single-cell RNA sequencing datasets. The source code of WEDGE has been released at https://github.com/QuKunLab/WEDGE.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33834202</pmid><doi>10.1093/bib/bbab085</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-5463
ispartof Briefings in Bioinformatics, 2021-04, Vol.22 (5)
issn 1467-5463
1477-4054
language eng
recordid cdi_proquest_miscellaneous_2511247061
source Coronavirus Research Database
title WEDGE: imputation of gene expression values from single-cell RNA-seq datasets using biased matrix decomposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_COVID&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WEDGE:%20imputation%20of%20gene%20expression%20values%20from%20single-cell%20RNA-seq%20datasets%20using%20biased%20matrix%20decomposition&rft.jtitle=Briefings%20in%20Bioinformatics&rft.au=Hu,%20Yinlei&rft.date=2021-04-08&rft.volume=22&rft.issue=5&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbab085&rft_dat=%3Cproquest_COVID%3E2510330232%3C/proquest_COVID%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-91571f7a90d361e4126069e3252038cbfa713b993a1ec0c90f60b6ae3c63f4723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2510330232&rft_id=info:pmid/33834202&rfr_iscdi=true