Loading…
Drought: Sensing, signalling, effects and tolerance in higher plants
Drought can be considered as a cocktail of multiple stressful conditions that contribute to osmotic and ionic imbalance in plants. Considering that water is vital for plant life, the very survival of the plant becomes questionable during drought conditions. Water deficit affects a wide spectrum of m...
Saved in:
Published in: | Physiologia plantarum 2021-06, Vol.172 (2), p.1291-1300 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Drought can be considered as a cocktail of multiple stressful conditions that contribute to osmotic and ionic imbalance in plants. Considering that water is vital for plant life, the very survival of the plant becomes questionable during drought conditions. Water deficit affects a wide spectrum of morpho‐physiological phenomena restricting overall plant growth, development and productivity. To evade such complications and ameliorate drought‐induced effects, plants have a battery of various defence mechanisms. These mechanisms can vary from stomatal adjustments to osmotic adjustments and antioxidant metabolism to ion regulations. In this review, we critically evaluate how drought is perceived and signalled through the whole plant via abscisic acid mediated pathways. Additionally, the impact of drought on photosynthesis, gas exchange variables and reactive oxygen species pathway was also reviewed, along with the reversal of these induced effects through associated morpho‐physiological counter mechanisms. |
---|---|
ISSN: | 0031-9317 1399-3054 |
DOI: | 10.1111/ppl.13423 |