Loading…
Isolation and Reactivity of Uranyl Superoxide
The high radiation field associated with spent nuclear fuel (UIVO2) pellets produces an array of reactive radical species that impact the corrosion and formation of secondary alteration phases. Dioxygen radicals are important as radiolysis products, but the interaction between these reactive oxygen...
Saved in:
Published in: | Angewandte Chemie International Edition 2021-06, Vol.60 (27), p.15041-15048 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The high radiation field associated with spent nuclear fuel (UIVO2) pellets produces an array of reactive radical species that impact the corrosion and formation of secondary alteration phases. Dioxygen radicals are important as radiolysis products, but the interaction between these reactive oxygen species and UVIO22+ and its effects on the resultant alteration phases is unclear. We report the first example of a UVI superoxide compound and explore its reactivity in the environments relevant to the storage of spent nuclear fuel. We utilized X‐ray diffraction and Raman scattering techniques to demonstrate that the uranyl superoxide reacts with CO2 in air to afford a mixed uranyl peroxide/carbonate within 3 days, both in solution and under atmospheric conditions. An additional transformation occurs over the course of 3 months to form a potassium UVI carbonate (grimselite), which also occurs as an alteration product on Chernobyl corium. Our results demonstrate the presence and significance of the superoxide anion in the alteration of spent nuclear fuel and indicate the impact of uranyl superoxide chemistry on high prevalence of carbonate in the secondary phases of spent nuclear fuel.
A novel uranyl superoxide compound reacts with carbon dioxide resulting in uranyl carbonate phases within six days of air exposure, directly linking uranyl superoxide to the carbonate corrosion products observed on the surface of spent nuclear fuel. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202103039 |