Loading…
Underlying Mechanisms for the Modulation of Self-Assembly and the Intrinsic Fluorescent Properties of Amino Acid-Functionalized Gold Nanoparticles
The origin of the blue fluorescence of proteins and peptides in the visible region has been a subject of intense debate despite several efforts. Although aromatic amino acids, namely tryptophan (Trp), tyrosine (Tyr), and phenylalanine (Phe) are responsible for the intrinsic luminescence of proteins...
Saved in:
Published in: | Langmuir 2021-04, Vol.37 (16), p.5022-5033 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a348t-993c37f8d1be1a1ac923fd4053f4f72f41709f9957ddeb0cc8439555ae732c653 |
---|---|
cites | cdi_FETCH-LOGICAL-a348t-993c37f8d1be1a1ac923fd4053f4f72f41709f9957ddeb0cc8439555ae732c653 |
container_end_page | 5033 |
container_issue | 16 |
container_start_page | 5022 |
container_title | Langmuir |
container_volume | 37 |
creator | De, Soumya Kanti Maity, Avijit Chakraborty, Anjan |
description | The origin of the blue fluorescence of proteins and peptides in the visible region has been a subject of intense debate despite several efforts. Although aromatic amino acids, namely tryptophan (Trp), tyrosine (Tyr), and phenylalanine (Phe) are responsible for the intrinsic luminescence of proteins and peptides, the underlying mechanism and contributions of these amino acids to the unusual blue fluorescence are still not well resolved. In the present endeavor, we show that the clusterization of both aromatic and aliphatic amino acids on the surface of the gold nanoparticles (Au NPs) leads to clusteroluminescence, which could be linked to the unusual fluorescence properties of the proteins and peptides and have been ignored in the past. The amino acid monomers initially form small aggregates through clusterization, which provides the fundamental building blocks to establish the amyloid structure as well as the luminescence property. Because of the clusterization, these Au NPs/nano-aggregate systems are also found to exhibit remarkable stability against the freeze–thaw cycle and several other external stimuli, which can be useful for biological and biomedical applications. |
doi_str_mv | 10.1021/acs.langmuir.1c00431 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2513243595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2513243595</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-993c37f8d1be1a1ac923fd4053f4f72f41709f9957ddeb0cc8439555ae732c653</originalsourceid><addsrcrecordid>eNp9kc1OGzEUhS1UBCnwBgh52c0E_2bGywg1FIk_CViPHPsajDx2as8swmP0iTvTBJZdefOdc63zIXROyZwSRi-1KfOg42s3-DynhhDB6QGaUclIJRtWf0MzUgte1WLBj9H3Ut4JIYoLdYSOOW_kglExQ39eooUctj6-4jswbzr60hXsUsb9G-C7ZIege58iTg4_QXDVshTo1mGLdbT_mJvYZx-LN3gVhpShGIg9fsxpA7n3UKbksvMx4aXxtloN0UyFOvgPsPg6BYvvdUwbPdImQDlFh06HAmf79wS9rH4-X_2qbh-ub66Wt5XmoukrpbjhtWssXQPVVBvFuLOCSO6Eq5kTtCbKKSVra2FNjGkEV1JKDTVnZiH5Cfqx693k9HuA0redH_8exlEhDaVlknImuFQTKnaoyamUDK7dZN_pvG0paScb7Wij_bTR7m2MsYv9hWHdgf0Kfc4_AmQHTPH3NORxlfL_zr_F0Jyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513243595</pqid></control><display><type>article</type><title>Underlying Mechanisms for the Modulation of Self-Assembly and the Intrinsic Fluorescent Properties of Amino Acid-Functionalized Gold Nanoparticles</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>De, Soumya Kanti ; Maity, Avijit ; Chakraborty, Anjan</creator><creatorcontrib>De, Soumya Kanti ; Maity, Avijit ; Chakraborty, Anjan</creatorcontrib><description>The origin of the blue fluorescence of proteins and peptides in the visible region has been a subject of intense debate despite several efforts. Although aromatic amino acids, namely tryptophan (Trp), tyrosine (Tyr), and phenylalanine (Phe) are responsible for the intrinsic luminescence of proteins and peptides, the underlying mechanism and contributions of these amino acids to the unusual blue fluorescence are still not well resolved. In the present endeavor, we show that the clusterization of both aromatic and aliphatic amino acids on the surface of the gold nanoparticles (Au NPs) leads to clusteroluminescence, which could be linked to the unusual fluorescence properties of the proteins and peptides and have been ignored in the past. The amino acid monomers initially form small aggregates through clusterization, which provides the fundamental building blocks to establish the amyloid structure as well as the luminescence property. Because of the clusterization, these Au NPs/nano-aggregate systems are also found to exhibit remarkable stability against the freeze–thaw cycle and several other external stimuli, which can be useful for biological and biomedical applications.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.1c00431</identifier><identifier>PMID: 33856214</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2021-04, Vol.37 (16), p.5022-5033</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-993c37f8d1be1a1ac923fd4053f4f72f41709f9957ddeb0cc8439555ae732c653</citedby><cites>FETCH-LOGICAL-a348t-993c37f8d1be1a1ac923fd4053f4f72f41709f9957ddeb0cc8439555ae732c653</cites><orcidid>0000-0001-5564-0679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33856214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De, Soumya Kanti</creatorcontrib><creatorcontrib>Maity, Avijit</creatorcontrib><creatorcontrib>Chakraborty, Anjan</creatorcontrib><title>Underlying Mechanisms for the Modulation of Self-Assembly and the Intrinsic Fluorescent Properties of Amino Acid-Functionalized Gold Nanoparticles</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The origin of the blue fluorescence of proteins and peptides in the visible region has been a subject of intense debate despite several efforts. Although aromatic amino acids, namely tryptophan (Trp), tyrosine (Tyr), and phenylalanine (Phe) are responsible for the intrinsic luminescence of proteins and peptides, the underlying mechanism and contributions of these amino acids to the unusual blue fluorescence are still not well resolved. In the present endeavor, we show that the clusterization of both aromatic and aliphatic amino acids on the surface of the gold nanoparticles (Au NPs) leads to clusteroluminescence, which could be linked to the unusual fluorescence properties of the proteins and peptides and have been ignored in the past. The amino acid monomers initially form small aggregates through clusterization, which provides the fundamental building blocks to establish the amyloid structure as well as the luminescence property. Because of the clusterization, these Au NPs/nano-aggregate systems are also found to exhibit remarkable stability against the freeze–thaw cycle and several other external stimuli, which can be useful for biological and biomedical applications.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1OGzEUhS1UBCnwBgh52c0E_2bGywg1FIk_CViPHPsajDx2as8swmP0iTvTBJZdefOdc63zIXROyZwSRi-1KfOg42s3-DynhhDB6QGaUclIJRtWf0MzUgte1WLBj9H3Ut4JIYoLdYSOOW_kglExQ39eooUctj6-4jswbzr60hXsUsb9G-C7ZIege58iTg4_QXDVshTo1mGLdbT_mJvYZx-LN3gVhpShGIg9fsxpA7n3UKbksvMx4aXxtloN0UyFOvgPsPg6BYvvdUwbPdImQDlFh06HAmf79wS9rH4-X_2qbh-ub66Wt5XmoukrpbjhtWssXQPVVBvFuLOCSO6Eq5kTtCbKKSVra2FNjGkEV1JKDTVnZiH5Cfqx693k9HuA0redH_8exlEhDaVlknImuFQTKnaoyamUDK7dZN_pvG0paScb7Wij_bTR7m2MsYv9hWHdgf0Kfc4_AmQHTPH3NORxlfL_zr_F0Jyc</recordid><startdate>20210427</startdate><enddate>20210427</enddate><creator>De, Soumya Kanti</creator><creator>Maity, Avijit</creator><creator>Chakraborty, Anjan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5564-0679</orcidid></search><sort><creationdate>20210427</creationdate><title>Underlying Mechanisms for the Modulation of Self-Assembly and the Intrinsic Fluorescent Properties of Amino Acid-Functionalized Gold Nanoparticles</title><author>De, Soumya Kanti ; Maity, Avijit ; Chakraborty, Anjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-993c37f8d1be1a1ac923fd4053f4f72f41709f9957ddeb0cc8439555ae732c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De, Soumya Kanti</creatorcontrib><creatorcontrib>Maity, Avijit</creatorcontrib><creatorcontrib>Chakraborty, Anjan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De, Soumya Kanti</au><au>Maity, Avijit</au><au>Chakraborty, Anjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underlying Mechanisms for the Modulation of Self-Assembly and the Intrinsic Fluorescent Properties of Amino Acid-Functionalized Gold Nanoparticles</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2021-04-27</date><risdate>2021</risdate><volume>37</volume><issue>16</issue><spage>5022</spage><epage>5033</epage><pages>5022-5033</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>The origin of the blue fluorescence of proteins and peptides in the visible region has been a subject of intense debate despite several efforts. Although aromatic amino acids, namely tryptophan (Trp), tyrosine (Tyr), and phenylalanine (Phe) are responsible for the intrinsic luminescence of proteins and peptides, the underlying mechanism and contributions of these amino acids to the unusual blue fluorescence are still not well resolved. In the present endeavor, we show that the clusterization of both aromatic and aliphatic amino acids on the surface of the gold nanoparticles (Au NPs) leads to clusteroluminescence, which could be linked to the unusual fluorescence properties of the proteins and peptides and have been ignored in the past. The amino acid monomers initially form small aggregates through clusterization, which provides the fundamental building blocks to establish the amyloid structure as well as the luminescence property. Because of the clusterization, these Au NPs/nano-aggregate systems are also found to exhibit remarkable stability against the freeze–thaw cycle and several other external stimuli, which can be useful for biological and biomedical applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33856214</pmid><doi>10.1021/acs.langmuir.1c00431</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5564-0679</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2021-04, Vol.37 (16), p.5022-5033 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_2513243595 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Underlying Mechanisms for the Modulation of Self-Assembly and the Intrinsic Fluorescent Properties of Amino Acid-Functionalized Gold Nanoparticles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underlying%20Mechanisms%20for%20the%20Modulation%20of%20Self-Assembly%20and%20the%20Intrinsic%20Fluorescent%20Properties%20of%20Amino%20Acid-Functionalized%20Gold%20Nanoparticles&rft.jtitle=Langmuir&rft.au=De,%20Soumya%20Kanti&rft.date=2021-04-27&rft.volume=37&rft.issue=16&rft.spage=5022&rft.epage=5033&rft.pages=5022-5033&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.1c00431&rft_dat=%3Cproquest_cross%3E2513243595%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-993c37f8d1be1a1ac923fd4053f4f72f41709f9957ddeb0cc8439555ae732c653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2513243595&rft_id=info:pmid/33856214&rfr_iscdi=true |