Loading…

Artificial intelligence clustering of adult spinal deformity sagittal plane morphology predicts surgical characteristics, alignment, and outcomes

Purpose AI algorithms have shown promise in medical image analysis. Previous studies of ASD clusters have analyzed alignment metrics—this study sought to complement these efforts by analyzing images of sagittal anatomical spinopelvic landmarks. We hypothesized that an AI algorithm would cluster preo...

Full description

Saved in:
Bibliographic Details
Published in:European spine journal 2021-08, Vol.30 (8), p.2157-2166
Main Authors: Durand, Wesley M., Lafage, Renaud, Hamilton, D. Kojo, Passias, Peter G., Kim, Han Jo, Protopsaltis, Themistocles, Lafage, Virginie, Smith, Justin S., Shaffrey, Christopher, Gupta, Munish, Kelly, Michael P., Klineberg, Eric O., Schwab, Frank, Gum, Jeffrey L., Mundis, Gregory, Eastlack, Robert, Kebaish, Khaled, Soroceanu, Alex, Hostin, Richard A., Burton, Doug, Bess, Shay, Ames, Christopher, Hart, Robert A., Daniels, Alan H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose AI algorithms have shown promise in medical image analysis. Previous studies of ASD clusters have analyzed alignment metrics—this study sought to complement these efforts by analyzing images of sagittal anatomical spinopelvic landmarks. We hypothesized that an AI algorithm would cluster preoperative lateral radiographs into groups with distinct morphology. Methods This was a retrospective review of a multicenter, prospectively collected database of adult spinal deformity. A total of 915 patients with adult spinal deformity and preoperative lateral radiographs were included. A 2 × 3, self-organizing map—a form of artificial neural network frequently employed in unsupervised classification tasks—was developed. The mean spine shape was plotted for each of the six clusters. Alignment, surgical characteristics, and outcomes were compared. Results Qualitatively, clusters C and D exhibited only mild sagittal plane deformity. Clusters B, E, and F, however, exhibited marked positive sagittal balance and loss of lumbar lordosis. Cluster A had mixed characteristics, likely representing compensated deformity. Patients in clusters B, E, and F disproportionately underwent 3-CO. PJK and PJF were particularly prevalent among clusters A and E. Among clusters B and F, patients who experienced PJK had significantly greater positive sagittal balance than those who did not. Conclusions This study clustered preoperative lateral radiographs of ASD patients into groups with highly distinct overall spinal morphology and association with sagittal alignment parameters, baseline HRQOL, and surgical characteristics. The relationship between SVA and PJK differed by cluster. This study represents significant progress toward incorporation of computer vision into clinically relevant classification systems in adult spinal deformity. Level of Evidence IV Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.
ISSN:0940-6719
1432-0932
DOI:10.1007/s00586-021-06799-z