Loading…
3D printed vascular phantoms for high-resolution biophotonic image quality assessment via direct laser writing
Fluorescence imaging techniques such as fluorescein angiography and fundus autofluorescence are often used to diagnose retinal pathologies; however, there are currently no standardized test methods for evaluating device performance. Here we present microstructured fluorescent phantoms fabricated usi...
Saved in:
Published in: | Optics letters 2021-04, Vol.46 (8), p.1987-1990 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fluorescence imaging techniques such as fluorescein angiography and fundus autofluorescence are often used to diagnose retinal pathologies; however, there are currently no standardized test methods for evaluating device performance. Here we present microstructured fluorescent phantoms fabricated using a submicron-scale three-dimensional printing technology, direct laser writing (DLW). We employ an in situ DLW technique to print 10 µm diameter microfluidic channels that support perfusions of fluorescent dyes. We then demonstrate how broadband photoresist fluorescence can be exploited to generate resolution targets and biomimetic models of retinal vasculature using standard DLW processes. The results indicate that these approaches show significant promise for generating better performance evaluation tools for fluorescence microscopy and imaging devices. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.412849 |