Loading…

Annexins A1 and A2 Accumulate and Are Immobilized at Cross-Linked Membrane–Membrane Interfaces

Rapid membrane repair is required to ensure cell survival after rupture of the plasma membrane. The annexin family of proteins is involved in plasma membrane repair (PMR) and is activated by the influx of Ca2+ from the extracellular medium at the site of injury. Annexins A1 and A2 (ANXA1 and ANXA2,...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2021-04, Vol.60 (16), p.1248-1259
Main Authors: Berg Klenow, Martin, Iversen, Christoffer, Wendelboe Lund, Frederik, Mularski, Anna, Busk Heitmann, Anne Sofie, Dias, Catarina, Nylandsted, Jesper, Simonsen, Adam Cohen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rapid membrane repair is required to ensure cell survival after rupture of the plasma membrane. The annexin family of proteins is involved in plasma membrane repair (PMR) and is activated by the influx of Ca2+ from the extracellular medium at the site of injury. Annexins A1 and A2 (ANXA1 and ANXA2, respectively) are structurally similar and bind to negatively charged phosphatidylserine (PS) to induce membrane cross-linking and to promote fusion, which are both essential processes that occur during membrane repair. The degree of annexin accumulation and the annexin mobility at cross-linked membranes are important aspects of ANXA1 and ANXA2 function in repair. Here, we quantify ANXA1- and ANXA2-induced membrane cross-linking between giant unilamellar vesicles (GUVs). Time-lapse measurements show that ANXA1 and ANXA2 can induce membrane cross-linking on a time scale compatible with PMR. Cross-linked membrane–membrane interfaces between the GUVs persist in time without fusion, and quantification of confocal microscopy images demonstrates that ANXA1, ANXA2, and, to a lesser extent, PS lipids accumulate at the double membrane interface. Fluorescence recovery after photobleaching shows that the annexins are fully immobilized at the double membrane interface, whereas PS lipids display a 75% decrease in mobility. In addition, the complete immobilization of annexins between two membranes indicates a high degree of network formation between annexins, suggesting that membrane cross-linking is mainly driven by protein–protein interactions.
ISSN:0006-2960
1520-4995
1520-4995
DOI:10.1021/acs.biochem.1c00126