Loading…

Disorder-Free Localization in an Interacting 2D Lattice Gauge Theory

Disorder-free localization has been recently introduced as a mechanism for ergodicity breaking in low-dimensional homogeneous lattice gauge theories caused by local constraints imposed by gauge invariance. We show that also genuinely interacting systems in two spatial dimensions can become nonergodi...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2021-04, Vol.126 (13), p.130401-130401, Article 130401
Main Authors: Karpov, P, Verdel, R, Huang, Y-P, Schmitt, M, Heyl, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-11ef965900b90346ed0f8563e80050f9eb8f17948dfb4c7f66fcfc5bc8dcff583
cites cdi_FETCH-LOGICAL-c387t-11ef965900b90346ed0f8563e80050f9eb8f17948dfb4c7f66fcfc5bc8dcff583
container_end_page 130401
container_issue 13
container_start_page 130401
container_title Physical review letters
container_volume 126
creator Karpov, P
Verdel, R
Huang, Y-P
Schmitt, M
Heyl, M
description Disorder-free localization has been recently introduced as a mechanism for ergodicity breaking in low-dimensional homogeneous lattice gauge theories caused by local constraints imposed by gauge invariance. We show that also genuinely interacting systems in two spatial dimensions can become nonergodic as a consequence of this mechanism. This result is all the more surprising since the conventional many-body localization is conjectured to be unstable in two dimensions; hence the gauge invariance represents an alternative robust localization mechanism surviving in higher dimensions in the presence of interactions. Specifically, we demonstrate nonergodic behavior in the quantum link model by obtaining a bound on the localization-delocalization transition through a classical correlated percolation problem implying a fragmentation of Hilbert space on the nonergodic side of the transition. We study the quantum dynamics in this system by introducing the method of "variational classical networks," an efficient and perturbatively controlled representation of the wave function in terms of a network of classical spins akin to artificial neural networks. We identify a distinguishing dynamical signature by studying the propagation of line defects, yielding different light cone structures in the localized and ergodic phases, respectively. The methods we introduce in this work can be applied to any lattice gauge theory with finite-dimensional local Hilbert spaces irrespective of spatial dimensionality.
doi_str_mv 10.1103/PhysRevLett.126.130401
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2514595048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2514595048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-11ef965900b90346ed0f8563e80050f9eb8f17948dfb4c7f66fcfc5bc8dcff583</originalsourceid><addsrcrecordid>eNpdkE1Lw0AURQdRbK3-hRJw4yb1vUw-JktpbRUCitR1mEzetCltUmcmQv31JrSKuLqbcy-Xw9gYYYII_P51fbBv9JmRcxMM4glyCAHP2BAhSf0EMTxnQwCOfgqQDNiVtRsA6FBxyQaci7ifGbLZrLKNKcn4c0PkZY2S2-pLuqqpvar2ZO09146MVK6qV14w8zLpXKXIW8h2Rd5yTY05XLMLLbeWbk45Yu_zx-X0yc9eFs_Th8xXXCTORySdxlF3qEiBhzGVoEUUcxIAEeiUCqExSUNR6iJUiY5jrbSKCiVKpXUk-IjdHXf3pvloybp8V1lF262sqWltHkQYRmkEYY_e_kM3TWvq7l1PJSGmEGBHxUdKmcZaQzrfm2onzSFHyHtB-R_PeScvP3ruiuPTfFvsqPyt_Yjl31GpeoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2517419021</pqid></control><display><type>article</type><title>Disorder-Free Localization in an Interacting 2D Lattice Gauge Theory</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Karpov, P ; Verdel, R ; Huang, Y-P ; Schmitt, M ; Heyl, M</creator><creatorcontrib>Karpov, P ; Verdel, R ; Huang, Y-P ; Schmitt, M ; Heyl, M</creatorcontrib><description>Disorder-free localization has been recently introduced as a mechanism for ergodicity breaking in low-dimensional homogeneous lattice gauge theories caused by local constraints imposed by gauge invariance. We show that also genuinely interacting systems in two spatial dimensions can become nonergodic as a consequence of this mechanism. This result is all the more surprising since the conventional many-body localization is conjectured to be unstable in two dimensions; hence the gauge invariance represents an alternative robust localization mechanism surviving in higher dimensions in the presence of interactions. Specifically, we demonstrate nonergodic behavior in the quantum link model by obtaining a bound on the localization-delocalization transition through a classical correlated percolation problem implying a fragmentation of Hilbert space on the nonergodic side of the transition. We study the quantum dynamics in this system by introducing the method of "variational classical networks," an efficient and perturbatively controlled representation of the wave function in terms of a network of classical spins akin to artificial neural networks. We identify a distinguishing dynamical signature by studying the propagation of line defects, yielding different light cone structures in the localized and ergodic phases, respectively. The methods we introduce in this work can be applied to any lattice gauge theory with finite-dimensional local Hilbert spaces irrespective of spatial dimensionality.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.126.130401</identifier><identifier>PMID: 33861103</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Artificial neural networks ; Dislocations ; Ergodic processes ; Gauge invariance ; Gauge theory ; Hilbert space ; Invariance ; Localization ; Many body problem ; Percolation ; Wave functions</subject><ispartof>Physical review letters, 2021-04, Vol.126 (13), p.130401-130401, Article 130401</ispartof><rights>Copyright American Physical Society Apr 2, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-11ef965900b90346ed0f8563e80050f9eb8f17948dfb4c7f66fcfc5bc8dcff583</citedby><cites>FETCH-LOGICAL-c387t-11ef965900b90346ed0f8563e80050f9eb8f17948dfb4c7f66fcfc5bc8dcff583</cites><orcidid>0000-0003-2223-8696 ; 0000-0003-1388-9841 ; 0000-0002-7554-8092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33861103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karpov, P</creatorcontrib><creatorcontrib>Verdel, R</creatorcontrib><creatorcontrib>Huang, Y-P</creatorcontrib><creatorcontrib>Schmitt, M</creatorcontrib><creatorcontrib>Heyl, M</creatorcontrib><title>Disorder-Free Localization in an Interacting 2D Lattice Gauge Theory</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Disorder-free localization has been recently introduced as a mechanism for ergodicity breaking in low-dimensional homogeneous lattice gauge theories caused by local constraints imposed by gauge invariance. We show that also genuinely interacting systems in two spatial dimensions can become nonergodic as a consequence of this mechanism. This result is all the more surprising since the conventional many-body localization is conjectured to be unstable in two dimensions; hence the gauge invariance represents an alternative robust localization mechanism surviving in higher dimensions in the presence of interactions. Specifically, we demonstrate nonergodic behavior in the quantum link model by obtaining a bound on the localization-delocalization transition through a classical correlated percolation problem implying a fragmentation of Hilbert space on the nonergodic side of the transition. We study the quantum dynamics in this system by introducing the method of "variational classical networks," an efficient and perturbatively controlled representation of the wave function in terms of a network of classical spins akin to artificial neural networks. We identify a distinguishing dynamical signature by studying the propagation of line defects, yielding different light cone structures in the localized and ergodic phases, respectively. The methods we introduce in this work can be applied to any lattice gauge theory with finite-dimensional local Hilbert spaces irrespective of spatial dimensionality.</description><subject>Artificial neural networks</subject><subject>Dislocations</subject><subject>Ergodic processes</subject><subject>Gauge invariance</subject><subject>Gauge theory</subject><subject>Hilbert space</subject><subject>Invariance</subject><subject>Localization</subject><subject>Many body problem</subject><subject>Percolation</subject><subject>Wave functions</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AURQdRbK3-hRJw4yb1vUw-JktpbRUCitR1mEzetCltUmcmQv31JrSKuLqbcy-Xw9gYYYII_P51fbBv9JmRcxMM4glyCAHP2BAhSf0EMTxnQwCOfgqQDNiVtRsA6FBxyQaci7ifGbLZrLKNKcn4c0PkZY2S2-pLuqqpvar2ZO09146MVK6qV14w8zLpXKXIW8h2Rd5yTY05XLMLLbeWbk45Yu_zx-X0yc9eFs_Th8xXXCTORySdxlF3qEiBhzGVoEUUcxIAEeiUCqExSUNR6iJUiY5jrbSKCiVKpXUk-IjdHXf3pvloybp8V1lF262sqWltHkQYRmkEYY_e_kM3TWvq7l1PJSGmEGBHxUdKmcZaQzrfm2onzSFHyHtB-R_PeScvP3ruiuPTfFvsqPyt_Yjl31GpeoQ</recordid><startdate>20210402</startdate><enddate>20210402</enddate><creator>Karpov, P</creator><creator>Verdel, R</creator><creator>Huang, Y-P</creator><creator>Schmitt, M</creator><creator>Heyl, M</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2223-8696</orcidid><orcidid>https://orcid.org/0000-0003-1388-9841</orcidid><orcidid>https://orcid.org/0000-0002-7554-8092</orcidid></search><sort><creationdate>20210402</creationdate><title>Disorder-Free Localization in an Interacting 2D Lattice Gauge Theory</title><author>Karpov, P ; Verdel, R ; Huang, Y-P ; Schmitt, M ; Heyl, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-11ef965900b90346ed0f8563e80050f9eb8f17948dfb4c7f66fcfc5bc8dcff583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Dislocations</topic><topic>Ergodic processes</topic><topic>Gauge invariance</topic><topic>Gauge theory</topic><topic>Hilbert space</topic><topic>Invariance</topic><topic>Localization</topic><topic>Many body problem</topic><topic>Percolation</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karpov, P</creatorcontrib><creatorcontrib>Verdel, R</creatorcontrib><creatorcontrib>Huang, Y-P</creatorcontrib><creatorcontrib>Schmitt, M</creatorcontrib><creatorcontrib>Heyl, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karpov, P</au><au>Verdel, R</au><au>Huang, Y-P</au><au>Schmitt, M</au><au>Heyl, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disorder-Free Localization in an Interacting 2D Lattice Gauge Theory</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2021-04-02</date><risdate>2021</risdate><volume>126</volume><issue>13</issue><spage>130401</spage><epage>130401</epage><pages>130401-130401</pages><artnum>130401</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Disorder-free localization has been recently introduced as a mechanism for ergodicity breaking in low-dimensional homogeneous lattice gauge theories caused by local constraints imposed by gauge invariance. We show that also genuinely interacting systems in two spatial dimensions can become nonergodic as a consequence of this mechanism. This result is all the more surprising since the conventional many-body localization is conjectured to be unstable in two dimensions; hence the gauge invariance represents an alternative robust localization mechanism surviving in higher dimensions in the presence of interactions. Specifically, we demonstrate nonergodic behavior in the quantum link model by obtaining a bound on the localization-delocalization transition through a classical correlated percolation problem implying a fragmentation of Hilbert space on the nonergodic side of the transition. We study the quantum dynamics in this system by introducing the method of "variational classical networks," an efficient and perturbatively controlled representation of the wave function in terms of a network of classical spins akin to artificial neural networks. We identify a distinguishing dynamical signature by studying the propagation of line defects, yielding different light cone structures in the localized and ergodic phases, respectively. The methods we introduce in this work can be applied to any lattice gauge theory with finite-dimensional local Hilbert spaces irrespective of spatial dimensionality.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>33861103</pmid><doi>10.1103/PhysRevLett.126.130401</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2223-8696</orcidid><orcidid>https://orcid.org/0000-0003-1388-9841</orcidid><orcidid>https://orcid.org/0000-0002-7554-8092</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-04, Vol.126 (13), p.130401-130401, Article 130401
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2514595048
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Artificial neural networks
Dislocations
Ergodic processes
Gauge invariance
Gauge theory
Hilbert space
Invariance
Localization
Many body problem
Percolation
Wave functions
title Disorder-Free Localization in an Interacting 2D Lattice Gauge Theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disorder-Free%20Localization%20in%20an%20Interacting%202D%20Lattice%20Gauge%20Theory&rft.jtitle=Physical%20review%20letters&rft.au=Karpov,%20P&rft.date=2021-04-02&rft.volume=126&rft.issue=13&rft.spage=130401&rft.epage=130401&rft.pages=130401-130401&rft.artnum=130401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.126.130401&rft_dat=%3Cproquest_cross%3E2514595048%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-11ef965900b90346ed0f8563e80050f9eb8f17948dfb4c7f66fcfc5bc8dcff583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2517419021&rft_id=info:pmid/33861103&rfr_iscdi=true