Loading…
Precise Monitoring of Singlet Oxygen in Specific Endocytic Organelles by Super-pH-Resolved Nanosensors
Singlet oxygen (1O2) plays a vital role in pathophysiological processes and is the dominant executor of photodynamic therapy (PDT). Several small molecular probes have been designed to detect singlet oxygen for the evaluation of PDT efficacy. However, little attention was paid to the precise visuali...
Saved in:
Published in: | ACS applied materials & interfaces 2021-04, Vol.13 (16), p.18533-18544 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Singlet oxygen (1O2) plays a vital role in pathophysiological processes and is the dominant executor of photodynamic therapy (PDT). Several small molecular probes have been designed to detect singlet oxygen for the evaluation of PDT efficacy. However, little attention was paid to the precise visualization of the 1O2 signal at the subcellular organelle level in living biological systems. Herein, a super-pH-resolved (SPR) nanosensor was developed to specifically illuminate 1O2 in endocytic organelles through encoding the cell-impermeant singlet oxygen sensor green (SOSG) into pH-sensitive micelles. The acid-activatable SPR-SOSG achieved more than 10-fold amplification of the 1O2 signal, leading to extremely higher sensitivity of singlet oxygen detection in specific endocytic organelles of living cells and animals, as compared with the nonactivatable nanoprobe and the commercially available 2′,7′-dichlorofluorescein diacetate (DCFH-DA) probe. Hence, the SPR-SOSG nanoplatform provides a promising tool to evaluate the efficacy and mechanism of nanocarrier-based photodynamic therapy. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c01730 |