Loading…

Quantum walk on a graph of spins: Magnetism and entanglement

We introduce a model of a quantum walk on a graph in which a particle jumps between neighboring nodes and interacts with independent spins sitting on the edges. Entanglement propagates with the walker. We apply this model to the case of a one-dimensional lattice to investigate its magnetic and entan...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2021-03, Vol.103 (3-1), p.032123-032123, Article 032123
Main Authors: Sellapillay, Kevissen, Verga, Alberto D
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-cf2c238eaeea64651dcb72f05efaee74a916682a1efb1e1ea711335a35dffed83
cites cdi_FETCH-LOGICAL-c389t-cf2c238eaeea64651dcb72f05efaee74a916682a1efb1e1ea711335a35dffed83
container_end_page 032123
container_issue 3-1
container_start_page 032123
container_title Physical review. E
container_volume 103
creator Sellapillay, Kevissen
Verga, Alberto D
description We introduce a model of a quantum walk on a graph in which a particle jumps between neighboring nodes and interacts with independent spins sitting on the edges. Entanglement propagates with the walker. We apply this model to the case of a one-dimensional lattice to investigate its magnetic and entanglement properties. In the continuum limit, we recover a Landau-Lifshitz equation that describes the precession of spins. A rich dynamics is observed, with regimes of particle propagation and localization, together with spin oscillations and relaxation. Entanglement of the asymptotic states follows a volume law for most parameters (the coin rotation angle and the particle-spin coupling).
doi_str_mv 10.1103/PhysRevE.103.032123
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2514598844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2514598844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-cf2c238eaeea64651dcb72f05efaee74a916682a1efb1e1ea711335a35dffed83</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRbKn9BYLsoy-tO7vZZCO-SKkXqHhBn8M0mW2jySZmE6X_3pTaPs05wzkz8DF2DmIKINTVy3rj3-hnPu3NVCgJUh2xoQwiMRFCq-ODDvSAjb3_FEJAKOII5CkbKGVCGZpoyG5eO3RtV_JfLL545TjyVYP1mleW-zp3_po_4cpRm_uSo8s4uRbdqqCyF2fsxGLhafw_R-zjbv4-e5gsnu8fZ7eLSapM3E5SK1OpDCERhkGoIUuXkbRCk-1XUYAxhKGRCGSXQEAYASilUenMWsqMGrHL3d26qb478m1S5j6lokBHVecTqSHQsTFB0EfVLpo2lfcN2aRu8hKbTQIi2ZJL9uSSrdmR61sX_w-6ZUnZobPnpP4AtktrMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514598844</pqid></control><display><type>article</type><title>Quantum walk on a graph of spins: Magnetism and entanglement</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Sellapillay, Kevissen ; Verga, Alberto D</creator><creatorcontrib>Sellapillay, Kevissen ; Verga, Alberto D</creatorcontrib><description>We introduce a model of a quantum walk on a graph in which a particle jumps between neighboring nodes and interacts with independent spins sitting on the edges. Entanglement propagates with the walker. We apply this model to the case of a one-dimensional lattice to investigate its magnetic and entanglement properties. In the continuum limit, we recover a Landau-Lifshitz equation that describes the precession of spins. A rich dynamics is observed, with regimes of particle propagation and localization, together with spin oscillations and relaxation. Entanglement of the asymptotic states follows a volume law for most parameters (the coin rotation angle and the particle-spin coupling).</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.103.032123</identifier><identifier>PMID: 33862687</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2021-03, Vol.103 (3-1), p.032123-032123, Article 032123</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-cf2c238eaeea64651dcb72f05efaee74a916682a1efb1e1ea711335a35dffed83</citedby><cites>FETCH-LOGICAL-c389t-cf2c238eaeea64651dcb72f05efaee74a916682a1efb1e1ea711335a35dffed83</cites><orcidid>0000-0002-7825-3353 ; 0000-0003-1773-7079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33862687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sellapillay, Kevissen</creatorcontrib><creatorcontrib>Verga, Alberto D</creatorcontrib><title>Quantum walk on a graph of spins: Magnetism and entanglement</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We introduce a model of a quantum walk on a graph in which a particle jumps between neighboring nodes and interacts with independent spins sitting on the edges. Entanglement propagates with the walker. We apply this model to the case of a one-dimensional lattice to investigate its magnetic and entanglement properties. In the continuum limit, we recover a Landau-Lifshitz equation that describes the precession of spins. A rich dynamics is observed, with regimes of particle propagation and localization, together with spin oscillations and relaxation. Entanglement of the asymptotic states follows a volume law for most parameters (the coin rotation angle and the particle-spin coupling).</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRbKn9BYLsoy-tO7vZZCO-SKkXqHhBn8M0mW2jySZmE6X_3pTaPs05wzkz8DF2DmIKINTVy3rj3-hnPu3NVCgJUh2xoQwiMRFCq-ODDvSAjb3_FEJAKOII5CkbKGVCGZpoyG5eO3RtV_JfLL545TjyVYP1mleW-zp3_po_4cpRm_uSo8s4uRbdqqCyF2fsxGLhafw_R-zjbv4-e5gsnu8fZ7eLSapM3E5SK1OpDCERhkGoIUuXkbRCk-1XUYAxhKGRCGSXQEAYASilUenMWsqMGrHL3d26qb478m1S5j6lokBHVecTqSHQsTFB0EfVLpo2lfcN2aRu8hKbTQIi2ZJL9uSSrdmR61sX_w-6ZUnZobPnpP4AtktrMg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Sellapillay, Kevissen</creator><creator>Verga, Alberto D</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7825-3353</orcidid><orcidid>https://orcid.org/0000-0003-1773-7079</orcidid></search><sort><creationdate>20210301</creationdate><title>Quantum walk on a graph of spins: Magnetism and entanglement</title><author>Sellapillay, Kevissen ; Verga, Alberto D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-cf2c238eaeea64651dcb72f05efaee74a916682a1efb1e1ea711335a35dffed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sellapillay, Kevissen</creatorcontrib><creatorcontrib>Verga, Alberto D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sellapillay, Kevissen</au><au>Verga, Alberto D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum walk on a graph of spins: Magnetism and entanglement</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>103</volume><issue>3-1</issue><spage>032123</spage><epage>032123</epage><pages>032123-032123</pages><artnum>032123</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We introduce a model of a quantum walk on a graph in which a particle jumps between neighboring nodes and interacts with independent spins sitting on the edges. Entanglement propagates with the walker. We apply this model to the case of a one-dimensional lattice to investigate its magnetic and entanglement properties. In the continuum limit, we recover a Landau-Lifshitz equation that describes the precession of spins. A rich dynamics is observed, with regimes of particle propagation and localization, together with spin oscillations and relaxation. Entanglement of the asymptotic states follows a volume law for most parameters (the coin rotation angle and the particle-spin coupling).</abstract><cop>United States</cop><pmid>33862687</pmid><doi>10.1103/PhysRevE.103.032123</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7825-3353</orcidid><orcidid>https://orcid.org/0000-0003-1773-7079</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2021-03, Vol.103 (3-1), p.032123-032123, Article 032123
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2514598844
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Quantum walk on a graph of spins: Magnetism and entanglement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20walk%20on%20a%20graph%20of%20spins:%20Magnetism%20and%20entanglement&rft.jtitle=Physical%20review.%20E&rft.au=Sellapillay,%20Kevissen&rft.date=2021-03-01&rft.volume=103&rft.issue=3-1&rft.spage=032123&rft.epage=032123&rft.pages=032123-032123&rft.artnum=032123&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.103.032123&rft_dat=%3Cproquest_cross%3E2514598844%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-cf2c238eaeea64651dcb72f05efaee74a916682a1efb1e1ea711335a35dffed83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2514598844&rft_id=info:pmid/33862687&rfr_iscdi=true