Loading…

Oxygen Vacancy Enhanced Two-Dimensional Lithium Titanate for Ultrafast and Long-Life Bifunctional Lithium Storage

Boosting sufficient Li+ ion mobility in Li4Ti5O12 (LTO) is crucial for high-rate performance lithium storage. Here, an ultrafast charge storage oxygen vacancy two-dimensional (2D) LTO nanosheet was successfully fabricated through a one-pot hydrothermal method. The selectively doped Al3+ into octahed...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2021-04, Vol.13 (16), p.18876-18886
Main Authors: Liu, Zhenjie, Huang, Yudai, Cai, Yanjun, Wang, Xingchao, Zhang, Yue, Guo, Yong, Ding, Juan, Cheng, Wenhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Boosting sufficient Li+ ion mobility in Li4Ti5O12 (LTO) is crucial for high-rate performance lithium storage. Here, an ultrafast charge storage oxygen vacancy two-dimensional (2D) LTO nanosheet was successfully fabricated through a one-pot hydrothermal method. The selectively doped Al3+ into octahedron Li+/Ti4+ 16d sites not only provide bulk oxygen vacancy and appropriate distorted TiO6 octahedra to facilitate Li+ ions diffusion, but also serve as a “pillar” to stabilize the Ti–O framework. The oxygen vacancy lowers Li+ ion diffusion energy barrier. Moreover, the 2D structure provides open diffusion channels for fast Li+ ion transport. As a result, the sample shows excellent electrochemical performance for bifunctional lithium storage. As a lithium-ion battery anode, the capacity retention reaches 112.8 mA h g–1 after 5000 cycles at 40 C with a fading rate of 0.288% per 100 cycles. Meanwhile, as a lithium-ion capacitor anode, it exhibits an excellent rate capacity of 120 mA h g–1 after 5000 cycles at 500 C with nearly 100% Coulombic efficiency. The produced LTO shows much higher rate capacity and longer lifetime than the reported LTO. Density functional theory calculations also demonstrate that oxygen vacancy can facilitate Li+ ion diffusion kinetics. The relationship between oxygen vacancy content and Li+ ions diffusion energy barrier in LTO is quantified. This work pioneers a defect engineering strategy for synthesized high-performance electrode materials.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c02962