Loading…
Choreographing endo-lysosomal Ca2+ throughout the life of a phagosome
The emergence of endo-lysosomes as ubiquitous Ca2+ stores with their unique cohort of channels has resulted in their being implicated in a growing number of processes in an ever-increasing number of cell types. The architectural and regulatory constraints of these acidic Ca2+ stores distinguishes th...
Saved in:
Published in: | Biochimica et biophysica acta. Molecular cell research 2021-06, Vol.1868 (7), p.119040-119040, Article 119040 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The emergence of endo-lysosomes as ubiquitous Ca2+ stores with their unique cohort of channels has resulted in their being implicated in a growing number of processes in an ever-increasing number of cell types. The architectural and regulatory constraints of these acidic Ca2+ stores distinguishes them from other larger Ca2+ sources such as the ER and influx across the plasma membrane. In view of recent advances in the understanding of the modes of operation, we discuss phagocytosis as a template for how endo-lysosomal Ca2+ signals (generated via TPC and TRPML channels) can be integrated in multiple sophisticated ways into biological processes. Phagocytosis illustrates how different endo-lysosomal Ca2+ signals drive different phases of a process, and how these can be altered by disease or infection. |
---|---|
ISSN: | 0167-4889 1879-2596 |
DOI: | 10.1016/j.bbamcr.2021.119040 |