Loading…
zinc-adapted fungus protects pines from zinc stress
• Here we investigated zinc tolerance of ectomycorrhizal Scots pine (Pinus sylvestris) seedlings. An ectomycorrhizal genotype of Suillus bovinus, collected from a Zn-contaminated site and showing adaptive Zn tolerance in vitro, was compared with a nonadapted isolate from a nonpolluted area. • A dose...
Saved in:
Published in: | The New phytologist 2004-02, Vol.161 (2), p.549-555 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | • Here we investigated zinc tolerance of ectomycorrhizal Scots pine (Pinus sylvestris) seedlings. An ectomycorrhizal genotype of Suillus bovinus, collected from a Zn-contaminated site and showing adaptive Zn tolerance in vitro, was compared with a nonadapted isolate from a nonpolluted area. • A dose-response experiment was performed. Dynamics of plant and fungal development, and phosphate and ammonium uptake capacity, were assessed under increasing Zn stress. Effects of Zn on transpiration, nutrient content and Zn accumulation were analysed. • Significant Zn-inoculation interaction effects were observed for several responses measured, including uptake rates of phosphate and ammonium; phosphorus, iron and Zn content in shoots; transpiration; biomass of external mycelia; and fungal biomass in roots. • The Zn-tolerant S. bovinus genotype was particularly efficient in protecting pines from Zn stress. The growth of a Zn-sensitive genotype from a normal wild-type population was inhibited at high Zn concentrations, and this isolate could not sustain the pines' acquisition of nutrients. This study shows that well adapted microbial root symbionts are a major component of the survival strategy of trees that colonize contaminated soils. |
---|---|
ISSN: | 0028-646X 1469-8137 |
DOI: | 10.1046/j.1469-8137.2003.00941.x |