Loading…

Amplified Interfacial Effect in an Atomically Dispersed RuOx‐on‐Pd 2D Inverse Nanocatalyst for High‐Performance Oxygen Reduction

Atomically dispersed oxide‐on‐metal inverse nanocatalysts provide a blueprint to amplify the strong oxide–metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx‐on‐Pd nanosheets, by in situ creating atomically dispersed RuOx...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2021-07, Vol.60 (29), p.16093-16100
Main Authors: Lyu, Zixi, Zhang, Xia‐Guang, Wang, Yucheng, Liu, Kai, Qiu, Chunyu, Liao, Xinyan, Yang, Weihua, Xie, Zhaoxiong, Xie, Shuifen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atomically dispersed oxide‐on‐metal inverse nanocatalysts provide a blueprint to amplify the strong oxide–metal interactions for heterocatalysis but remain a grand challenge in fabrication. Here we report a 2D inverse nanocatalyst, RuOx‐on‐Pd nanosheets, by in situ creating atomically dispersed RuOx/Pd interfaces densely on ultrathin Pd nanosheets via a one‐pot synthesis. The product displays unexpected performance toward the oxygen reduction reaction (ORR) in alkaline medium, which represents 8.0‐ and 22.4‐fold enhancement in mass activity compared to the state‐of‐the‐art Pt/C and Pd/C catalysts, respectively, showcasing an excellent Pt‐alternative cathode electrocatalyst for fuel cells and metal–air batteries. Density functional theory calculations validate that the RuOx/Pd interface can accumulate partial charge from the 2D Pd host and subtly change the adsorption configuration of O2 to facilitate the O−O bond cleavage. Meanwhile, the d‐band center of Pd nanosubstrates is effectively downshifted, realizing weakened oxygen binding strength. An atomically dispersed RuOx‐on‐Pd ultrathin 2D inverse nanocatalyst with amplified oxide/metal interface effects may serve as an excellent Pt‐alternative cathode electrocatalyst for fuel cells and metal–air batteries.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202104013