Loading…
Adsorption of U(VI) from aqueous solution by using KMnO4-modified hazelnut shell activated carbon: characterisation and artificial neural network modelling
This study is based on U(VI) removal from wastewater by KMnO 4 -modified hazelnut shell activated carbon (KM–HSAC) using adsorption technology. A characterisation study of KM–HSAC was conducted through scanning electron microscope and energy-dispersive X-ray spectroscopy (EDS) analysis. The rough su...
Saved in:
Published in: | Environmental science and pollution research international 2021-09, Vol.28 (34), p.47354-47366 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-a863f723381758ea5aa26e62dcddf8bc0ae44bbcacec82f4bd55c68c58c469d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-a863f723381758ea5aa26e62dcddf8bc0ae44bbcacec82f4bd55c68c58c469d33 |
container_end_page | 47366 |
container_issue | 34 |
container_start_page | 47354 |
container_title | Environmental science and pollution research international |
container_volume | 28 |
creator | Zhu, Mijia Li, Fanxiu Chen, Wu Yin, Xianqing Yi, Zhengji Zhang, Shuyong |
description | This study is based on U(VI) removal from wastewater by KMnO
4
-modified hazelnut shell activated carbon (KM–HSAC) using adsorption technology. A characterisation study of KM–HSAC was conducted through scanning electron microscope and energy-dispersive X-ray spectroscopy (EDS) analysis. The rough surface of KM–HSAC contains many irregular microspores. The EDS pattern confirmed the U(VI) adsorption on the KM–HSAC. A batch study experiment gave optimum results for U(VI) at pH 6, contact time of 160 min, initial U(VI) concentration of 155.56 mg/L and KM–HSAC dosage of 4 g/L, with a maximum adsorption capacity of 22.27 mg/g. The prediction performance of artificial neural network models was validated through the low values of statistical error (2.708 and 8.241 for RMSE of training and testing data, respectively) and the high determination coefficient value (0.987 and 0.906 for training and testing data, respectively). Experimental results suggest that KM–HSAC has a high potential for the removal of U(VI) from wastewater. |
doi_str_mv | 10.1007/s11356-021-14034-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2518221139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563939251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-a863f723381758ea5aa26e62dcddf8bc0ae44bbcacec82f4bd55c68c58c469d33</originalsourceid><addsrcrecordid>eNp9kctOHDEQRa0oSJmQ_EBWltjAwsSvfmWHUAgoRGyArVVtuxlDjz3Y3QHyK_nZFDNIkViwKsl17nVVXUK-CH4oOG--FiFUVTMuBROaK80e35GFqIVmje6692TBO62ZUFp_IB9LueVc8k42C_L3yJWU11NIkaaBXu1fnx3QIacVhfvZp7nQksZ50-6f6FxCvKE_f8ULzVbJhSF4R5fwx49xnmhZ-nGkYKfwGyZsWMh9it-oXULGV59DgY0TREchTyi3AUYa_Zw3ZXpI-Y6iMfrgR5_IzgBj8Z9f6i65Ovl-eXzKzi9-nB0fnTOrKjkxaGs1NFKpVjRV66ECkLWvpbPODW1vOXit-96C9baVg-5dVdm6tVVrdd05pXbJ_tZ3nRMuXSazCsXiDBCfL2BkJVop8cIdonuv0Ns054jTIVUj0CGMlNxSNqdSsh_MOocV5CcjuHnOy2zzMpiX2eRlHlGktqKCcLzx-b_1G6p_naaclQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563939251</pqid></control><display><type>article</type><title>Adsorption of U(VI) from aqueous solution by using KMnO4-modified hazelnut shell activated carbon: characterisation and artificial neural network modelling</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Zhu, Mijia ; Li, Fanxiu ; Chen, Wu ; Yin, Xianqing ; Yi, Zhengji ; Zhang, Shuyong</creator><creatorcontrib>Zhu, Mijia ; Li, Fanxiu ; Chen, Wu ; Yin, Xianqing ; Yi, Zhengji ; Zhang, Shuyong</creatorcontrib><description>This study is based on U(VI) removal from wastewater by KMnO
4
-modified hazelnut shell activated carbon (KM–HSAC) using adsorption technology. A characterisation study of KM–HSAC was conducted through scanning electron microscope and energy-dispersive X-ray spectroscopy (EDS) analysis. The rough surface of KM–HSAC contains many irregular microspores. The EDS pattern confirmed the U(VI) adsorption on the KM–HSAC. A batch study experiment gave optimum results for U(VI) at pH 6, contact time of 160 min, initial U(VI) concentration of 155.56 mg/L and KM–HSAC dosage of 4 g/L, with a maximum adsorption capacity of 22.27 mg/g. The prediction performance of artificial neural network models was validated through the low values of statistical error (2.708 and 8.241 for RMSE of training and testing data, respectively) and the high determination coefficient value (0.987 and 0.906 for training and testing data, respectively). Experimental results suggest that KM–HSAC has a high potential for the removal of U(VI) from wastewater.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-021-14034-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activated carbon ; Adsorption ; Aquatic Pollution ; Aqueous solutions ; Artificial neural networks ; Atmospheric Protection/Air Quality Control/Air Pollution ; Earth and Environmental Science ; Ecotoxicology ; Electron microscopes ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Hazelnuts ; Microspores ; Neural networks ; Potassium permanganate ; Research Article ; Root-mean-square errors ; Scanning electron microscopy ; Statistical analysis ; Training ; Waste Water Technology ; Wastewater ; Wastewater treatment ; Water Management ; Water Pollution Control ; X-ray spectroscopy</subject><ispartof>Environmental science and pollution research international, 2021-09, Vol.28 (34), p.47354-47366</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-a863f723381758ea5aa26e62dcddf8bc0ae44bbcacec82f4bd55c68c58c469d33</citedby><cites>FETCH-LOGICAL-c352t-a863f723381758ea5aa26e62dcddf8bc0ae44bbcacec82f4bd55c68c58c469d33</cites><orcidid>0000-0003-0061-8305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2563939251/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2563939251?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids></links><search><creatorcontrib>Zhu, Mijia</creatorcontrib><creatorcontrib>Li, Fanxiu</creatorcontrib><creatorcontrib>Chen, Wu</creatorcontrib><creatorcontrib>Yin, Xianqing</creatorcontrib><creatorcontrib>Yi, Zhengji</creatorcontrib><creatorcontrib>Zhang, Shuyong</creatorcontrib><title>Adsorption of U(VI) from aqueous solution by using KMnO4-modified hazelnut shell activated carbon: characterisation and artificial neural network modelling</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><description>This study is based on U(VI) removal from wastewater by KMnO
4
-modified hazelnut shell activated carbon (KM–HSAC) using adsorption technology. A characterisation study of KM–HSAC was conducted through scanning electron microscope and energy-dispersive X-ray spectroscopy (EDS) analysis. The rough surface of KM–HSAC contains many irregular microspores. The EDS pattern confirmed the U(VI) adsorption on the KM–HSAC. A batch study experiment gave optimum results for U(VI) at pH 6, contact time of 160 min, initial U(VI) concentration of 155.56 mg/L and KM–HSAC dosage of 4 g/L, with a maximum adsorption capacity of 22.27 mg/g. The prediction performance of artificial neural network models was validated through the low values of statistical error (2.708 and 8.241 for RMSE of training and testing data, respectively) and the high determination coefficient value (0.987 and 0.906 for training and testing data, respectively). Experimental results suggest that KM–HSAC has a high potential for the removal of U(VI) from wastewater.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Aquatic Pollution</subject><subject>Aqueous solutions</subject><subject>Artificial neural networks</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Electron microscopes</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Hazelnuts</subject><subject>Microspores</subject><subject>Neural networks</subject><subject>Potassium permanganate</subject><subject>Research Article</subject><subject>Root-mean-square errors</subject><subject>Scanning electron microscopy</subject><subject>Statistical analysis</subject><subject>Training</subject><subject>Waste Water Technology</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>X-ray spectroscopy</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kctOHDEQRa0oSJmQ_EBWltjAwsSvfmWHUAgoRGyArVVtuxlDjz3Y3QHyK_nZFDNIkViwKsl17nVVXUK-CH4oOG--FiFUVTMuBROaK80e35GFqIVmje6692TBO62ZUFp_IB9LueVc8k42C_L3yJWU11NIkaaBXu1fnx3QIacVhfvZp7nQksZ50-6f6FxCvKE_f8ULzVbJhSF4R5fwx49xnmhZ-nGkYKfwGyZsWMh9it-oXULGV59DgY0TREchTyi3AUYa_Zw3ZXpI-Y6iMfrgR5_IzgBj8Z9f6i65Ovl-eXzKzi9-nB0fnTOrKjkxaGs1NFKpVjRV66ECkLWvpbPODW1vOXit-96C9baVg-5dVdm6tVVrdd05pXbJ_tZ3nRMuXSazCsXiDBCfL2BkJVop8cIdonuv0Ns054jTIVUj0CGMlNxSNqdSsh_MOocV5CcjuHnOy2zzMpiX2eRlHlGktqKCcLzx-b_1G6p_naaclQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Zhu, Mijia</creator><creator>Li, Fanxiu</creator><creator>Chen, Wu</creator><creator>Yin, Xianqing</creator><creator>Yi, Zhengji</creator><creator>Zhang, Shuyong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0061-8305</orcidid></search><sort><creationdate>20210901</creationdate><title>Adsorption of U(VI) from aqueous solution by using KMnO4-modified hazelnut shell activated carbon: characterisation and artificial neural network modelling</title><author>Zhu, Mijia ; Li, Fanxiu ; Chen, Wu ; Yin, Xianqing ; Yi, Zhengji ; Zhang, Shuyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-a863f723381758ea5aa26e62dcddf8bc0ae44bbcacec82f4bd55c68c58c469d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Aquatic Pollution</topic><topic>Aqueous solutions</topic><topic>Artificial neural networks</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Electron microscopes</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Hazelnuts</topic><topic>Microspores</topic><topic>Neural networks</topic><topic>Potassium permanganate</topic><topic>Research Article</topic><topic>Root-mean-square errors</topic><topic>Scanning electron microscopy</topic><topic>Statistical analysis</topic><topic>Training</topic><topic>Waste Water Technology</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Mijia</creatorcontrib><creatorcontrib>Li, Fanxiu</creatorcontrib><creatorcontrib>Chen, Wu</creatorcontrib><creatorcontrib>Yin, Xianqing</creatorcontrib><creatorcontrib>Yi, Zhengji</creatorcontrib><creatorcontrib>Zhang, Shuyong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Mijia</au><au>Li, Fanxiu</au><au>Chen, Wu</au><au>Yin, Xianqing</au><au>Yi, Zhengji</au><au>Zhang, Shuyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption of U(VI) from aqueous solution by using KMnO4-modified hazelnut shell activated carbon: characterisation and artificial neural network modelling</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>28</volume><issue>34</issue><spage>47354</spage><epage>47366</epage><pages>47354-47366</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>This study is based on U(VI) removal from wastewater by KMnO
4
-modified hazelnut shell activated carbon (KM–HSAC) using adsorption technology. A characterisation study of KM–HSAC was conducted through scanning electron microscope and energy-dispersive X-ray spectroscopy (EDS) analysis. The rough surface of KM–HSAC contains many irregular microspores. The EDS pattern confirmed the U(VI) adsorption on the KM–HSAC. A batch study experiment gave optimum results for U(VI) at pH 6, contact time of 160 min, initial U(VI) concentration of 155.56 mg/L and KM–HSAC dosage of 4 g/L, with a maximum adsorption capacity of 22.27 mg/g. The prediction performance of artificial neural network models was validated through the low values of statistical error (2.708 and 8.241 for RMSE of training and testing data, respectively) and the high determination coefficient value (0.987 and 0.906 for training and testing data, respectively). Experimental results suggest that KM–HSAC has a high potential for the removal of U(VI) from wastewater.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11356-021-14034-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0061-8305</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2021-09, Vol.28 (34), p.47354-47366 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2518221139 |
source | ABI/INFORM Collection; Springer Nature |
subjects | Activated carbon Adsorption Aquatic Pollution Aqueous solutions Artificial neural networks Atmospheric Protection/Air Quality Control/Air Pollution Earth and Environmental Science Ecotoxicology Electron microscopes Environment Environmental Chemistry Environmental Health Environmental science Hazelnuts Microspores Neural networks Potassium permanganate Research Article Root-mean-square errors Scanning electron microscopy Statistical analysis Training Waste Water Technology Wastewater Wastewater treatment Water Management Water Pollution Control X-ray spectroscopy |
title | Adsorption of U(VI) from aqueous solution by using KMnO4-modified hazelnut shell activated carbon: characterisation and artificial neural network modelling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20of%20U(VI)%20from%20aqueous%20solution%20by%20using%20KMnO4-modified%20hazelnut%20shell%20activated%20carbon:%20characterisation%20and%20artificial%20neural%20network%20modelling&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Zhu,%20Mijia&rft.date=2021-09-01&rft.volume=28&rft.issue=34&rft.spage=47354&rft.epage=47366&rft.pages=47354-47366&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-021-14034-x&rft_dat=%3Cproquest_cross%3E2563939251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-a863f723381758ea5aa26e62dcddf8bc0ae44bbcacec82f4bd55c68c58c469d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2563939251&rft_id=info:pmid/&rfr_iscdi=true |